Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix/just workload in workload graph #135

Merged
merged 4 commits into from
Sep 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"

[project]
name = "FSRS-Optimizer"
version = "5.0.6"
version = "5.0.7"
readme = "README.md"
dependencies = [
"matplotlib>=3.7.0",
Expand Down
81 changes: 41 additions & 40 deletions src/fsrs_optimizer/fsrs_simulator.py
Original file line number Diff line number Diff line change
Expand Up @@ -260,8 +260,9 @@ def sample(
forget_rating_offset=DEFAULT_FORGET_RATING_OFFSET,
forget_session_len=DEFAULT_FORGET_SESSION_LEN,
loss_aversion=2.5,
workload_only=False,
):
memorization = []
results = []
if learn_span < 100:
SAMPLE_SIZE = 16
elif learn_span < 365:
Expand Down Expand Up @@ -290,8 +291,11 @@ def sample(
loss_aversion,
seed=42 + i,
)
memorization.append(cost_per_day.sum() / memorized_cnt_per_day[-1])
return np.mean(memorization)
if workload_only:
results.append(cost_per_day.sum())
else:
results.append(cost_per_day.sum() / memorized_cnt_per_day[-1])
return np.mean(results)


def brent(tol=0.01, maxiter=20, **kwargs):
Expand Down Expand Up @@ -411,68 +415,65 @@ def brent(tol=0.01, maxiter=20, **kwargs):
raise Exception("The algorithm terminated without finding a valid value.")


def workload_graph(default_params):
R = [x / 100 for x in range(70, 100)]
cost_per_memorization = [sample(r=r, **default_params) for r in R]
def workload_graph(default_params, sampling_size=30):
R = np.linspace(0.7, 0.999, sampling_size).tolist()
default_params["max_cost_perday"] = math.inf
default_params["learn_limit_perday"] = int(
default_params["deck_size"] / default_params["learn_span"]
)
default_params["review_limit_perday"] = math.inf
workload = [sample(r=r, workload_only=True, **default_params) for r in R]

# this is for testing
# cost_per_memorization = [min(x, 2.3 * min(cost_per_memorization)) for x in cost_per_memorization]
min_w = min(cost_per_memorization) # minimum workload
max_w = max(cost_per_memorization) # maximum workload
min1_index = R.index(R[cost_per_memorization.index(min_w)])
# workload = [min(x, 2.3 * min(workload)) for x in workload]
min_w = min(workload) # minimum workload
max_w = max(workload) # maximum workload
min1_index = R.index(R[workload.index(min_w)])

min_w2 = 0
min_w3 = 0
target2 = 2 * min_w
target3 = 3 * min_w

for i in range(len(cost_per_memorization) - 1):
if (cost_per_memorization[i] <= target2) and (
cost_per_memorization[i + 1] >= target2
):
if abs(cost_per_memorization[i] - target2) < abs(
cost_per_memorization[i + 1] - target2
):
min_w2 = cost_per_memorization[i]
for i in range(len(workload) - 1):
if (workload[i] <= target2) and (workload[i + 1] >= target2):
if abs(workload[i] - target2) < abs(workload[i + 1] - target2):
min_w2 = workload[i]
else:
min_w2 = cost_per_memorization[i + 1]

for i in range(len(cost_per_memorization) - 1):
if (cost_per_memorization[i] <= target3) and (
cost_per_memorization[i + 1] >= target3
):
if abs(cost_per_memorization[i] - target3) < abs(
cost_per_memorization[i + 1] - target3
):
min_w3 = cost_per_memorization[i]
min_w2 = workload[i + 1]

for i in range(len(workload) - 1):
if (workload[i] <= target3) and (workload[i + 1] >= target3):
if abs(workload[i] - target3) < abs(workload[i + 1] - target3):
min_w3 = workload[i]
else:
min_w3 = cost_per_memorization[i + 1]
min_w3 = workload[i + 1]

if min_w2 == 0:
min2_index = len(R)
else:
min2_index = R.index(R[cost_per_memorization.index(min_w2)])
min2_index = R.index(R[workload.index(min_w2)])

min1_5_index = int(math.ceil((min2_index + 3 * min1_index) / 4))
if min_w3 == 0:
min3_index = len(R)
else:
min3_index = R.index(R[cost_per_memorization.index(min_w3)])
min3_index = R.index(R[workload.index(min_w3)])

fig = plt.figure(figsize=(16, 8))
ax = fig.gca()
if min1_index > 0:
ax.fill_between(
x=R[: min1_index + 1],
y1=0,
y2=cost_per_memorization[: min1_index + 1],
y2=workload[: min1_index + 1],
color="red",
alpha=1,
)
ax.fill_between(
x=R[min1_index : min1_5_index + 1],
y1=0,
y2=cost_per_memorization[min1_index : min1_5_index + 1],
y2=workload[min1_index : min1_5_index + 1],
color="gold",
alpha=1,
)
Expand All @@ -481,29 +482,29 @@ def workload_graph(default_params):
ax.fill_between(
x=R[: min1_5_index + 1],
y1=0,
y2=cost_per_memorization[: min1_5_index + 1],
y2=workload[: min1_5_index + 1],
color="gold",
alpha=1,
)

ax.fill_between(
x=R[min1_5_index : min2_index + 1],
y1=0,
y2=cost_per_memorization[min1_5_index : min2_index + 1],
y2=workload[min1_5_index : min2_index + 1],
color="limegreen",
alpha=1,
)
ax.fill_between(
x=R[min2_index : min3_index + 1],
y1=0,
y2=cost_per_memorization[min2_index : min3_index + 1],
y2=workload[min2_index : min3_index + 1],
color="gold",
alpha=1,
)
ax.fill_between(
x=R[min3_index:],
y1=0,
y2=cost_per_memorization[min3_index:],
y2=workload[min3_index:],
color="red",
alpha=1,
)
Expand All @@ -521,7 +522,7 @@ def workload_graph(default_params):

ax.set_ylim(0, lim)
ax.set_ylabel("Workload (minutes of study per day)", fontsize=20)
ax.set_xlabel("Retention", fontsize=20)
ax.set_xlabel("Desired Retention", fontsize=20)
ax.axhline(y=min_w, color="black", alpha=0.75, ls="--")
ax.text(
0.701,
Expand Down Expand Up @@ -565,7 +566,7 @@ def workload_graph(default_params):
color="black",
fontsize=12,
)

fig.tight_layout(h_pad=0, w_pad=0)
return fig


Expand Down Expand Up @@ -635,4 +636,4 @@ def moving_average(data, window_size=365 // 20):
ax.set_title("Memorized Count per Day")
ax.grid(True)
plt.show()
workload_graph(default_params).savefig("workload.png")
workload_graph(default_params, sampling_size=300).savefig("workload.png")