-
Notifications
You must be signed in to change notification settings - Fork 624
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add OpenTelemetry Python SDK Benchmarks (pytest) benchmark result for 9…
- Loading branch information
github-action-benchmark
committed
Oct 25, 2024
1 parent
41a9773
commit 194c183
Showing
1 changed file
with
347 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
window.BENCHMARK_DATA = { | ||
"lastUpdate": 1729190934512, | ||
"lastUpdate": 1729858327466, | ||
"repoUrl": "https://github.com/open-telemetry/opentelemetry-python", | ||
"entries": { | ||
"OpenTelemetry Python SDK Benchmarks - Python 3.11 - SDK": [ | ||
|
@@ -77448,6 +77448,352 @@ window.BENCHMARK_DATA = { | |
"extra": "mean: 18.411716132902306 usec\nrounds: 15959" | ||
} | ||
] | ||
}, | ||
{ | ||
"commit": { | ||
"author": { | ||
"email": "[email protected]", | ||
"name": "Emídio Neto", | ||
"username": "emdneto" | ||
}, | ||
"committer": { | ||
"email": "[email protected]", | ||
"name": "GitHub", | ||
"username": "web-flow" | ||
}, | ||
"distinct": true, | ||
"id": "966750aad4ba2a9c123b4f14785958ffe50b54ae", | ||
"message": "add contrib openai-v2 instrumentation workflow (#4239)\n\nSigned-off-by: emdneto <[email protected]>", | ||
"timestamp": "2024-10-25T14:10:53+02:00", | ||
"tree_id": "385be3f34d590dd5eb817a7b204a71b41156eeb8", | ||
"url": "https://github.com/open-telemetry/opentelemetry-python/commit/966750aad4ba2a9c123b4f14785958ffe50b54ae" | ||
}, | ||
"date": 1729858326667, | ||
"tool": "pytest", | ||
"benches": [ | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/logs/test_benchmark_logging_handler.py::test_simple_get_logger_different_names[1]", | ||
"value": 17.511322643710283, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00783593242911694", | ||
"extra": "mean: 57.105909150681995 msec\nrounds: 19" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/logs/test_benchmark_logging_handler.py::test_simple_get_logger_different_names[10]", | ||
"value": 17.69856826313112, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.009295194799917977", | ||
"extra": "mean: 56.501745515944144 msec\nrounds: 19" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/logs/test_benchmark_logging_handler.py::test_simple_get_logger_different_names[100]", | ||
"value": 17.555593463085277, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00934297388464139", | ||
"extra": "mean: 56.96190231920857 msec\nrounds: 19" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/logs/test_benchmark_logging_handler.py::test_simple_get_logger_different_names[1000]", | ||
"value": 15.451635369268416, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.021194787237842745", | ||
"extra": "mean: 64.71806874170024 msec\nrounds: 17" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[0-delta]", | ||
"value": 376912.00368416234, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.937789596456516e-7", | ||
"extra": "mean: 2.6531391683613275 usec\nrounds: 13997" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[1-delta]", | ||
"value": 379230.8237072837, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.718411202745199e-7", | ||
"extra": "mean: 2.6369164569066474 usec\nrounds: 49908" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[3-delta]", | ||
"value": 353670.3050833421, | ||
"unit": "iter/sec", | ||
"range": "stddev: 7.029879993706716e-7", | ||
"extra": "mean: 2.827492118017516 usec\nrounds: 31396" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[5-delta]", | ||
"value": 320676.63893267314, | ||
"unit": "iter/sec", | ||
"range": "stddev: 8.676763037802825e-7", | ||
"extra": "mean: 3.118406140616787 usec\nrounds: 57855" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[10-delta]", | ||
"value": 287822.12021897564, | ||
"unit": "iter/sec", | ||
"range": "stddev: 7.322121396679842e-7", | ||
"extra": "mean: 3.4743681244485236 usec\nrounds: 45551" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[0-cumulative]", | ||
"value": 388565.8525036065, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.495306620130044e-7", | ||
"extra": "mean: 2.573566342890922 usec\nrounds: 33905" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[1-cumulative]", | ||
"value": 380603.7302927691, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.670344015054456e-7", | ||
"extra": "mean: 2.627404621680342 usec\nrounds: 65483" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[3-cumulative]", | ||
"value": 351393.05506542744, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.328357411822274e-7", | ||
"extra": "mean: 2.8458160614864902 usec\nrounds: 37469" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[5-cumulative]", | ||
"value": 327537.1208888138, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.013746330337606e-7", | ||
"extra": "mean: 3.0530890583832826 usec\nrounds: 62908" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[10-cumulative]", | ||
"value": 291031.0820833804, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.552042895543815e-7", | ||
"extra": "mean: 3.436059106956487 usec\nrounds: 66832" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[0]", | ||
"value": 396034.3125381616, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.998985025009745e-7", | ||
"extra": "mean: 2.5250337365746325 usec\nrounds: 16656" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[1]", | ||
"value": 380568.45891300164, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.259607138851497e-7", | ||
"extra": "mean: 2.627648131577297 usec\nrounds: 65443" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[3]", | ||
"value": 358819.8808178709, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.830256177485138e-7", | ||
"extra": "mean: 2.786913583831154 usec\nrounds: 64164" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[5]", | ||
"value": 332326.56203757355, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.0203385908914e-7", | ||
"extra": "mean: 3.009088391456768 usec\nrounds: 59152" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[10]", | ||
"value": 294781.9887435542, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.274031597810932e-7", | ||
"extra": "mean: 3.3923375178459447 usec\nrounds: 64777" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[0]", | ||
"value": 301346.19824779796, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.000001447397226450723", | ||
"extra": "mean: 3.318442395539023 usec\nrounds: 256" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[1]", | ||
"value": 321684.71516673086, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.648872369274578e-7", | ||
"extra": "mean: 3.1086338668024522 usec\nrounds: 92441" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[3]", | ||
"value": 325822.52273510443, | ||
"unit": "iter/sec", | ||
"range": "stddev: 5.851465466102922e-7", | ||
"extra": "mean: 3.0691555378232884 usec\nrounds: 120483" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[5]", | ||
"value": 322851.71567832836, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.147737510131657e-7", | ||
"extra": "mean: 3.097397199512933 usec\nrounds: 110213" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record[7]", | ||
"value": 324559.64973134943, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.085992139417953e-7", | ||
"extra": "mean: 3.0810977298864435 usec\nrounds: 112830" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[0]", | ||
"value": 323666.2831784851, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.300222002760444e-7", | ||
"extra": "mean: 3.08960201285023 usec\nrounds: 10676" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[1]", | ||
"value": 323587.5074251174, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.343222029022662e-7", | ||
"extra": "mean: 3.0903541609418084 usec\nrounds: 100916" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[3]", | ||
"value": 316824.42180328706, | ||
"unit": "iter/sec", | ||
"range": "stddev: 7.650404244986582e-7", | ||
"extra": "mean: 3.1563223387523123 usec\nrounds: 45880" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[5]", | ||
"value": 323192.6771251248, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.314532974457634e-7", | ||
"extra": "mean: 3.0941295109011637 usec\nrounds: 99136" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_10[7]", | ||
"value": 322119.58477634407, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.45975004228015e-7", | ||
"extra": "mean: 3.1044371322356126 usec\nrounds: 64991" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[0]", | ||
"value": 318204.5114154278, | ||
"unit": "iter/sec", | ||
"range": "stddev: 7.177553634587941e-7", | ||
"extra": "mean: 3.1426330052701954 usec\nrounds: 11453" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[1]", | ||
"value": 320922.84956823266, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.021784260452735e-7", | ||
"extra": "mean: 3.116013712782973 usec\nrounds: 113187" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[3]", | ||
"value": 321861.99116493674, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.513220932757025e-7", | ||
"extra": "mean: 3.1069216852248775 usec\nrounds: 45706" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[5]", | ||
"value": 321179.8524378035, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.762476042290748e-7", | ||
"extra": "mean: 3.113520329528298 usec\nrounds: 106438" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_49[7]", | ||
"value": 323366.50147879595, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.062221685811941e-7", | ||
"extra": "mean: 3.0924662741096354 usec\nrounds: 114234" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[0]", | ||
"value": 272813.82129502285, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.841797484561777e-7", | ||
"extra": "mean: 3.6655034384001857 usec\nrounds: 115" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[1]", | ||
"value": 321752.4656013056, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.279570591568096e-7", | ||
"extra": "mean: 3.1079792912578146 usec\nrounds: 108767" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[3]", | ||
"value": 316843.54136933514, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.319783823381328e-7", | ||
"extra": "mean: 3.156131874041672 usec\nrounds: 103305" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[5]", | ||
"value": 319660.8353705307, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.011726268698039e-7", | ||
"extra": "mean: 3.128315668827127 usec\nrounds: 113276" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_50[7]", | ||
"value": 319941.3617653726, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.164640126214077e-7", | ||
"extra": "mean: 3.1255727439622043 usec\nrounds: 106851" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[0]", | ||
"value": 290449.0755150805, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0000012606862150402918", | ||
"extra": "mean: 3.4429443379243216 usec\nrounds: 222" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[1]", | ||
"value": 313600.9640456774, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.584976057190737e-7", | ||
"extra": "mean: 3.188765707538914 usec\nrounds: 83550" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[3]", | ||
"value": 314433.5205633187, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.38962137257527e-7", | ||
"extra": "mean: 3.1803224993584176 usec\nrounds: 43466" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[5]", | ||
"value": 315940.90756413643, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.169838973633469e-7", | ||
"extra": "mean: 3.1651488492258593 usec\nrounds: 112299" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/metrics/test_benchmark_metrics_histogram.py::test_histogram_record_1000[7]", | ||
"value": 313467.286028025, | ||
"unit": "iter/sec", | ||
"range": "stddev: 6.233147522631344e-7", | ||
"extra": "mean: 3.190125555591778 usec\nrounds: 103062" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/trace/test_benchmark_trace.py::test_simple_start_span", | ||
"value": 79505.62219407229, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0000014559865776099734", | ||
"extra": "mean: 12.577726862623773 usec\nrounds: 9897" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/benchmarks/trace/test_benchmark_trace.py::test_simple_start_as_current_span", | ||
"value": 53191.8588711434, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0000018031488390355984", | ||
"extra": "mean: 18.799869401490316 usec\nrounds: 16034" | ||
} | ||
] | ||
} | ||
] | ||
} | ||
|