Skip to content

Commit

Permalink
clean up proofs
Browse files Browse the repository at this point in the history
  • Loading branch information
tobiasgrosser committed Oct 19, 2024
1 parent a1c7c23 commit 3b7b071
Showing 1 changed file with 0 additions and 11 deletions.
11 changes: 0 additions & 11 deletions src/Init/Data/Int/Order.lean
Original file line number Diff line number Diff line change
Expand Up @@ -529,14 +529,6 @@ theorem toNat_sub_toNat_neg : ∀ n : Int, ↑n.toNat - ↑(-n).toNat = n
| 0 => rfl
| _+1 => rfl

@[local simp] theorem ofNat_sub_ofNat (m n : Nat) (h : n ≤ m) : (↑m - ↑n : Int) = ↑(m - n) := by
by_cases h' : n = m
· subst h'
simp
· have h'' : n < m := by simp [Nat.lt_of_le_of_ne, *]
induction (m-n)
sorry

/-! ### toNat' -/

theorem mem_toNat' : ∀ {a : Int} {n : Nat}, toNat' a = some n ↔ a = n
Expand Down Expand Up @@ -1076,6 +1068,3 @@ theorem eq_natAbs_iff_mul_eq_zero : natAbs a = n ↔ (a - n) * (a + n) = 0 := by
rw [natAbs_eq_iff, Int.mul_eq_zero, ← Int.sub_neg, Int.sub_eq_zero, Int.sub_eq_zero]

end Int

@[local simp] theorem ofNat_sub_ofNat (m n : Nat) (h : n ≤ m) : (↑m - ↑n : Int) = ↑(m - n) := by
[Int.sub_]

0 comments on commit 3b7b071

Please sign in to comment.