Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.07492 #6338

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
281 changes: 281 additions & 0 deletions joss.07492/10.21105.joss.07492.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,281 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20250115094613-08d7417763b85a6abed93440442c8c2214734297</doi_batch_id>
<timestamp>20250115094613</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>01</month>
<year>2025</year>
</publication_date>
<journal_volume>
<volume>10</volume>
</journal_volume>
<issue>105</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>ssdtools v2: An R package to fit Species Sensitivity Distributions</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Joe</given_name>
<surname>Thorley</surname>
<affiliations>
<institution><institution_name>Poisson Consulting, Canada</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-7683-4592</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Rebecca</given_name>
<surname>Fisher</surname>
<affiliations>
<institution><institution_name>Australian Institute of Marine Science, Australia</institution_name></institution>
<institution><institution_name>Oceans Institute, The University of Western Australia, Australia</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-5148-6731</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>David</given_name>
<surname>Fox</surname>
<affiliations>
<institution><institution_name>The University of Melbourne, Australia</institution_name></institution>
<institution><institution_name>Environmetrics Australia, Australia</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-3178-7243</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Carl</given_name>
<surname>Schwarz</surname>
<affiliations>
<institution><institution_name>Simon Fraser University, Canada</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-8525-862X</ORCID>
</person_name>
</contributors>
<publication_date>
<month>01</month>
<day>15</day>
<year>2025</year>
</publication_date>
<pages>
<first_page>7492</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07492</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14609128</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7492</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07492</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07492</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07492.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="newman_applying_2000">
<article_title>Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species</article_title>
<author>Newman</author>
<journal_title>Environmental Toxicology and Chemistry</journal_title>
<issue>2</issue>
<volume>19</volume>
<doi>10.1002/etc.5620190233</doi>
<cYear>2000</cYear>
<unstructured_citation>Newman, M. C., Ownby, D. R., Mézin, L. C. A., Powell, D. C., Christensen, T. R. L., Lerberg, S. B., &amp; Anderson, B.-A. (2000). Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environmental Toxicology and Chemistry, 19(2), 508–515. https://doi.org/10.1002/etc.5620190233</unstructured_citation>
</citation>
<citation key="dalgarno_shinyssdtools_2021">
<article_title>shinyssdtools: A web application for fitting Species Sensitivity Distributions (SSDs)</article_title>
<author>Dalgarno</author>
<journal_title>Journal of Open Source Software</journal_title>
<issue>57</issue>
<volume>6</volume>
<doi>10.21105/joss.02848</doi>
<issn>2475-9066</issn>
<cYear>2021</cYear>
<unstructured_citation>Dalgarno, S. (2021). shinyssdtools: A web application for fitting Species Sensitivity Distributions (SSDs). Journal of Open Source Software, 6(57), 2848. https://doi.org/10.21105/joss.02848</unstructured_citation>
</citation>
<citation key="schwarz_improving_2019">
<article_title>Improving Statistical Methods for Modeling Species Sensitivity Distributions</article_title>
<author>Schwarz</author>
<cYear>2019</cYear>
<unstructured_citation>Schwarz, C., &amp; Tillmanns, A. (2019). Improving Statistical Methods for Modeling Species Sensitivity Distributions (No. WSS2019-07). Province of British Columbia. https://a100.gov.bc.ca/pub/acat/documents/r57400/2_1568399094009_8398900200.pdf</unstructured_citation>
</citation>
<citation key="posthuma_species_2001">
<volume_title>Species sensitivity distributions in ecotoxicology</volume_title>
<author>Posthuma</author>
<doi>10.1002/etc.4373</doi>
<cYear>2001</cYear>
<unstructured_citation>Posthuma, L., Suter II, G., &amp; Traas, T. (2001). Species sensitivity distributions in ecotoxicology. CRC press. https://doi.org/10.1002/etc.4373</unstructured_citation>
</citation>
<citation key="fitdistrplus">
<article_title>fitdistrplus: An R package for fitting distributions</article_title>
<author>Delignette-Muller</author>
<journal_title>Journal of Statistical Software</journal_title>
<issue>4</issue>
<volume>64</volume>
<doi>10.18637/jss.v064.i04</doi>
<cYear>2015</cYear>
<unstructured_citation>Delignette-Muller, M., &amp; Dutang, C. (2015). fitdistrplus: An R package for fitting distributions. Journal of Statistical Software, 64(4), 1–34. https://doi.org/10.18637/jss.v064.i04</unstructured_citation>
</citation>
<citation key="ggplot2">
<volume_title>ggplot2: Elegant graphics for data analysis</volume_title>
<author>Wickham</author>
<doi>10.1007/978-0-387-98141-3</doi>
<isbn>978-3-319-24277-4</isbn>
<cYear>2016</cYear>
<unstructured_citation>Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://doi.org/10.1007/978-0-387-98141-3</unstructured_citation>
</citation>
<citation key="r">
<volume_title>R: A language and environment for statistical computing</volume_title>
<author>R Core Team</author>
<cYear>2024</cYear>
<unstructured_citation>R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/</unstructured_citation>
</citation>
<citation key="burnham_model_2002">
<volume_title>Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach</volume_title>
<author>Burnham</author>
<doi>10.1007/b97636</doi>
<isbn>978-0-387-95364-9</isbn>
<cYear>2002</cYear>
<unstructured_citation>Burnham, K., &amp; Anderson, D. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer New York. https://doi.org/10.1007/b97636</unstructured_citation>
</citation>
<citation key="millar_maximum_2011">
<volume_title>Maximum likelihood estimation and inference: With examples in R, SAS, and ADMB</volume_title>
<author>Millar</author>
<doi>10.1002/9780470094846</doi>
<isbn>978-0-470-09482-2</isbn>
<cYear>2011</cYear>
<unstructured_citation>Millar, R. B. (2011). Maximum likelihood estimation and inference: With examples in R, SAS, and ADMB. Wiley. https://doi.org/10.1002/9780470094846</unstructured_citation>
</citation>
<citation key="ssddata">
<volume_title>ssddata: Species Sensitivity Distribution Data</volume_title>
<author>Fisher</author>
<doi>10.32614/cran.package.ssddata</doi>
<cYear>2021</cYear>
<unstructured_citation>Fisher, R., &amp; Thorley, J. (2021). ssddata: Species Sensitivity Distribution Data. https://doi.org/10.32614/cran.package.ssddata</unstructured_citation>
</citation>
<citation key="tmb">
<article_title>TMB: Automatic differentiation and laplace approximation</article_title>
<author>Kristensen</author>
<journal_title>Journal of Statistical Software</journal_title>
<issue>5</issue>
<volume>70</volume>
<doi>10.18637/jss.v070.i05</doi>
<cYear>2016</cYear>
<unstructured_citation>Kristensen, K., Nielsen, A., Berg, C., Skaug, H., &amp; Bell, B. (2016). TMB: Automatic differentiation and laplace approximation. Journal of Statistical Software, 70(5), 1–21. https://doi.org/10.18637/jss.v070.i05</unstructured_citation>
</citation>
<citation key="thorley2018ssdtools">
<article_title>ssdtools: An R package to fit species sensitivity distributions</article_title>
<author>Thorley</author>
<journal_title>Journal of Open Source Software</journal_title>
<issue>31</issue>
<volume>3</volume>
<doi>10.21105/joss.01082</doi>
<cYear>2018</cYear>
<unstructured_citation>Thorley, J., &amp; Schwarz, C. (2018). ssdtools: An R package to fit species sensitivity distributions. Journal of Open Source Software, 3(31), 1082. https://doi.org/10.21105/joss.01082</unstructured_citation>
</citation>
<citation key="barry2012burrlioz">
<article_title>Burrlioz 2.0 manual</article_title>
<author>Barry</author>
<journal_title>Commonwealth Science and Industrical Research Organisation</journal_title>
<cYear>2012</cYear>
<unstructured_citation>Barry, S., &amp; Henderson, B. (2012). Burrlioz 2.0 manual. Commonwealth Science and Industrical Research Organisation. https://research.csiro.au/software/burrlioz</unstructured_citation>
</citation>
<citation key="fox_recent_2021">
<article_title>Recent Developments in Species Sensitivity Distribution Modeling</article_title>
<author>Fox</author>
<journal_title>Environmental Toxicology and Chemistry</journal_title>
<issue>2</issue>
<volume>40</volume>
<doi>10.1002/etc.4925</doi>
<issn>0730-7268</issn>
<cYear>2021</cYear>
<unstructured_citation>Fox, D., van Dam, R., Fisher, R., Batley, G., Tillmanns, A., Thorley, J., Schwarz, C., Spry, D., &amp; McTavish, K. (2021). Recent Developments in Species Sensitivity Distribution Modeling. Environmental Toxicology and Chemistry, 40(2), 293–308. https://doi.org/10.1002/etc.4925</unstructured_citation>
</citation>
<citation key="fox_methodologies_2022">
<article_title>Joint investigation into statistical methodologies underpinning the derivation of toxicant guideline values in Australia and New Zealand</article_title>
<author>Fox</author>
<doi>10.25845/fm9b-7n28</doi>
<cYear>2022</cYear>
<unstructured_citation>Fox, D., Fisher, R., Thorley, J., &amp; Schwarz, C. (2022). Joint investigation into statistical methodologies underpinning the derivation of toxicant guideline values in Australia and New Zealand. Environmetrics Australia; Australian Institute of Marine Science. https://doi.org/10.25845/fm9b-7n28</unstructured_citation>
</citation>
<citation key="fox_methodologies_2024">
<article_title>Final report of the joint investigation into SSD modelling and ssdtools implementation for the derivation of toxicant guidelines values in Australia and New Zealand. Report prepared for the department of climate change, energy, the environment and water</article_title>
<author>Fox</author>
<doi>10.25845/xtvt-yc51</doi>
<cYear>2024</cYear>
<unstructured_citation>Fox, D., Fisher, R., &amp; Thorley, J. (2024). Final report of the joint investigation into SSD modelling and ssdtools implementation for the derivation of toxicant guidelines values in Australia and New Zealand. Report prepared for the department of climate change, energy, the environment and water. Environmetrics Australia; Australian Institute of Marine Science. https://doi.org/10.25845/xtvt-yc51</unstructured_citation>
</citation>
<citation key="Warne2018">
<article_title>Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants – update of 2015 version.</article_title>
<author>Warne</author>
<cYear>2018</cYear>
<unstructured_citation>Warne, M., Batley, GE, van Dam, R., Chapman, J., Fox, D., Hickey, C., &amp; Stauber, J. (2018). Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants – update of 2015 version. Prepared for the Revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra, 48 pp. https://www.waterquality.gov.au/sites/default/files/documents/warne-wqg-derivation2018.pdf</unstructured_citation>
</citation>
<citation key="lepper2005manual">
<article_title>Manual on the methodological framework to derive environmental quality standards for priority substances in accordance with article 16 of the water framework directive (2000/60/EC)</article_title>
<author>Lepper</author>
<journal_title>Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology</journal_title>
<volume>15</volume>
<cYear>2005</cYear>
<unstructured_citation>Lepper, P. (2005). Manual on the methodological framework to derive environmental quality standards for priority substances in accordance with article 16 of the water framework directive (2000/60/EC). Schmallenberg, Germany: Fraunhofer-Institute Molecular Biology and Applied Ecology, 15, 51–52. https://www.wrrl-info.de/docs/manual-derivation-qs.pdf</unstructured_citation>
</citation>
<citation key="bcmecc2019">
<article_title>Derivation of Water Quality Guidelines for the Protection of Aquatic Life in British Columbia. Water quality guideline series, WQG‐06</article_title>
<author>BC Ministry of Environment and Climate Change Strategy</author>
<cYear>2019</cYear>
<unstructured_citation>BC Ministry of Environment and Climate Change Strategy. (2019). Derivation of Water Quality Guidelines for the Protection of Aquatic Life in British Columbia. Water quality guideline series, WQG‐06. Province of British Columbia, Victoria, BC, Canada. https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/derivation-protocol/bc_wqg_aquatic_life_derivation_protocol.pdf</unstructured_citation>
</citation>
<citation key="USEPA2020">
<article_title>Species sensitivity distribution (SSD) toolbox</article_title>
<author>US EPA</author>
<doi>10.23645/epacomptox.11971392.v2</doi>
<cYear>2020</cYear>
<unstructured_citation>US EPA. (2020). Species sensitivity distribution (SSD) toolbox. Center for Computational Toxicology; Exposure, Durham, NC. https://doi.org/10.23645/epacomptox.11971392.v2</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07492/10.21105.joss.07492.pdf
Binary file not shown.
Loading