-
Notifications
You must be signed in to change notification settings - Fork 241
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TorchFX] Conformance test init (#2841)
### Changes Conformance test for resnet18 ### Reason for changes To extend testing scope for the TorchFX backend ### Related tickets #2766 ### Tests post_training_quantization/442 is successfull
- Loading branch information
1 parent
b108455
commit eb91af2
Showing
6 changed files
with
231 additions
and
80 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
80 changes: 80 additions & 0 deletions
80
tests/post_training/pipelines/image_classification_base.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
# Copyright (c) 2024 Intel Corporation | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import copy | ||
import os | ||
|
||
import numpy as np | ||
import openvino as ov | ||
import torch | ||
from sklearn.metrics import accuracy_score | ||
from torchvision import datasets | ||
|
||
import nncf | ||
from nncf.common.logging.track_progress import track | ||
from tests.post_training.pipelines.base import DEFAULT_VAL_THREADS | ||
from tests.post_training.pipelines.base import PTQTestPipeline | ||
|
||
|
||
class ImageClassificationBase(PTQTestPipeline): | ||
"""Base pipeline for Image Classification models""" | ||
|
||
def prepare_calibration_dataset(self): | ||
dataset = datasets.ImageFolder(root=self.data_dir / "imagenet" / "val", transform=self.transform) | ||
loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, num_workers=2, shuffle=False) | ||
|
||
self.calibration_dataset = nncf.Dataset(loader, self.get_transform_calibration_fn()) | ||
|
||
def _validate(self): | ||
val_dataset = datasets.ImageFolder(root=self.data_dir / "imagenet" / "val", transform=self.transform) | ||
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, num_workers=2, shuffle=False) | ||
|
||
dataset_size = len(val_loader) | ||
|
||
# Initialize result tensors for async inference support. | ||
predictions = np.zeros((dataset_size)) | ||
references = -1 * np.ones((dataset_size)) | ||
|
||
core = ov.Core() | ||
|
||
if os.environ.get("INFERENCE_NUM_THREADS"): | ||
# Set CPU_THREADS_NUM for OpenVINO inference | ||
inference_num_threads = os.environ.get("INFERENCE_NUM_THREADS") | ||
core.set_property("CPU", properties={"INFERENCE_NUM_THREADS": str(inference_num_threads)}) | ||
|
||
ov_model = core.read_model(self.path_compressed_ir) | ||
compiled_model = core.compile_model(ov_model, device_name="CPU") | ||
|
||
jobs = int(os.environ.get("NUM_VAL_THREADS", DEFAULT_VAL_THREADS)) | ||
infer_queue = ov.AsyncInferQueue(compiled_model, jobs) | ||
|
||
with track(total=dataset_size, description="Validation") as pbar: | ||
|
||
def process_result(request, userdata): | ||
output_data = request.get_output_tensor().data | ||
predicted_label = np.argmax(output_data, axis=1) | ||
predictions[userdata] = predicted_label | ||
pbar.progress.update(pbar.task, advance=1) | ||
|
||
infer_queue.set_callback(process_result) | ||
|
||
for i, (images, target) in enumerate(val_loader): | ||
# W/A for memory leaks when using torch DataLoader and OpenVINO | ||
image_copies = copy.deepcopy(images.numpy()) | ||
infer_queue.start_async(image_copies, userdata=i) | ||
references[i] = target | ||
|
||
infer_queue.wait_all() | ||
|
||
acc_top1 = accuracy_score(predictions, references) | ||
|
||
self.run_info.metric_name = "Acc@1" | ||
self.run_info.metric_value = acc_top1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
121 changes: 121 additions & 0 deletions
121
tests/post_training/pipelines/image_classification_torchvision.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
# Copyright (c) 2024 Intel Corporation | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import onnx | ||
import openvino as ov | ||
import torch | ||
from torch._export import capture_pre_autograd_graph | ||
from torchvision import models | ||
|
||
from nncf.torch import disable_patching | ||
from tests.post_training.pipelines.base import PT_BACKENDS | ||
from tests.post_training.pipelines.base import BackendType | ||
from tests.post_training.pipelines.image_classification_base import ImageClassificationBase | ||
|
||
|
||
class ImageClassificationTorchvision(ImageClassificationBase): | ||
"""Pipeline for Image Classification model from torchvision repository""" | ||
|
||
models_vs_imagenet_weights = { | ||
models.resnet18: models.ResNet18_Weights.DEFAULT, | ||
models.mobilenet_v3_small: models.MobileNet_V3_Small_Weights.DEFAULT, | ||
models.vit_b_16: models.ViT_B_16_Weights.DEFAULT, | ||
models.swin_v2_s: models.Swin_V2_S_Weights.DEFAULT, | ||
} | ||
|
||
def __init__(self, *args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
self.model_weights: models.WeightsEnum = None | ||
self.input_name: str = None | ||
|
||
def prepare_model(self) -> None: | ||
model_cls = models.__dict__.get(self.model_id) | ||
self.model_weights = self.models_vs_imagenet_weights[model_cls] | ||
model = model_cls(weights=self.model_weights) | ||
model.eval() | ||
|
||
self.static_input_size = [self.batch_size, 3, 224, 224] | ||
self.input_size = self.static_input_size.copy() | ||
if self.batch_size > 1: # Dynamic batch_size shape export | ||
self.input_size[0] = -1 | ||
|
||
self.dummy_tensor = torch.rand(self.static_input_size) | ||
|
||
if self.backend == BackendType.FX_TORCH: | ||
with torch.no_grad(): | ||
with disable_patching(): | ||
self.model = capture_pre_autograd_graph(model, (self.dummy_tensor,)) | ||
|
||
elif self.backend in PT_BACKENDS: | ||
self.model = model | ||
|
||
if self.backend == BackendType.ONNX: | ||
onnx_path = self.fp32_model_dir / "model_fp32.onnx" | ||
additional_kwargs = {} | ||
if self.batch_size > 1: | ||
additional_kwargs["input_names"] = ["image"] | ||
additional_kwargs["dynamic_axes"] = {"image": {0: "batch"}} | ||
torch.onnx.export( | ||
model, self.dummy_tensor, onnx_path, export_params=True, opset_version=13, **additional_kwargs | ||
) | ||
self.model = onnx.load(onnx_path) | ||
self.input_name = self.model.graph.input[0].name | ||
|
||
elif self.backend in [BackendType.OV, BackendType.FP32]: | ||
with torch.no_grad(): | ||
self.model = ov.convert_model(model, example_input=self.dummy_tensor, input=self.input_size) | ||
self.input_name = list(inp.get_any_name() for inp in self.model.inputs)[0] | ||
|
||
self._dump_model_fp32() | ||
|
||
# Set device after dump fp32 model | ||
if self.backend == BackendType.CUDA_TORCH: | ||
self.model.cuda() | ||
self.dummy_tensor = self.dummy_tensor.cuda() | ||
|
||
def _dump_model_fp32(self) -> None: | ||
"""Dump IRs of fp32 models, to help debugging.""" | ||
if self.backend in PT_BACKENDS: | ||
with disable_patching(): | ||
ov_model = ov.convert_model( | ||
torch.export.export(self.model, args=(self.dummy_tensor,)), | ||
example_input=self.dummy_tensor, | ||
input=self.input_size, | ||
) | ||
ov.serialize(ov_model, self.fp32_model_dir / "model_fp32.xml") | ||
|
||
if self.backend == BackendType.FX_TORCH: | ||
exported_model = torch.export.export(self.model, (self.dummy_tensor,)) | ||
ov_model = ov.convert_model(exported_model, example_input=self.dummy_tensor, input=self.input_size) | ||
ov.serialize(ov_model, self.fp32_model_dir / "fx_model_fp32.xml") | ||
|
||
if self.backend in [BackendType.FP32, BackendType.OV]: | ||
ov.serialize(self.model, self.fp32_model_dir / "model_fp32.xml") | ||
|
||
def prepare_preprocessor(self) -> None: | ||
self.transform = self.model_weights.transforms() | ||
|
||
def get_transform_calibration_fn(self): | ||
if self.backend in [BackendType.FX_TORCH] + PT_BACKENDS: | ||
device = torch.device("cuda" if self.backend == BackendType.CUDA_TORCH else "cpu") | ||
|
||
def transform_fn(data_item): | ||
images, _ = data_item | ||
return images.to(device) | ||
|
||
else: | ||
|
||
def transform_fn(data_item): | ||
images, _ = data_item | ||
return {self.input_name: np.array(images, dtype=np.float32)} | ||
|
||
return transform_fn |