Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Aftermath of the rerouting of primary_decomposition and friends #3115

Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions src/Rings/mpoly-ideals.jl
Original file line number Diff line number Diff line change
Expand Up @@ -534,6 +534,13 @@ function primary_decomposition(I::T; algorithm::Symbol=:GTZ, cache::Bool=true) w
end::Vector{Tuple{T,T}}
end

function _old_primary_decomposition(I::T; algorithm::Symbol=:GTZ, cache::Bool=true) where {T<:MPolyIdeal}
!cache && return _compute_primary_decomposition(I, algorithm=algorithm)
return get_attribute!(I, :primary_decomposition) do
return _compute_primary_decomposition(I, algorithm=algorithm)
end::Vector{Tuple{T,T}}
end

function primary_decomposition(
I::MPolyIdeal{T};
algorithm::Symbol=:GTZ, cache::Bool=true
Expand Down Expand Up @@ -839,6 +846,38 @@ function minimal_primes(I::MPolyIdeal; algorithm::Symbol = :GTZ, cache::Bool=tru
return V
end

function _old_minimal_primes(I::MPolyIdeal; algorithm::Symbol = :GTZ, cache::Bool=true)
has_attribute(I, :minimal_primes) && return get_attribute(I, :minimal_primes)::Vector{typeof(I)}
R = base_ring(I)
if isa(base_ring(R), NumField) && !isa(base_ring(R), AnticNumberField)
A, mA = absolute_simple_field(base_ring(R))
mp = minimal_primes(map_coefficients(pseudo_inv(mA), I); algorithm = algorithm)
result = typeof(I)[map_coefficients(mA, x) for x = mp]
cache && set_attribute!(I, :minimal_primes=>result)
return result
end
if elem_type(base_ring(R)) <: FieldElement
if algorithm == :GTZ
l = Singular.LibPrimdec.minAssGTZ(singular_polynomial_ring(I), singular_generators(I))
elseif algorithm == :charSets
l = Singular.LibPrimdec.minAssChar(singular_polynomial_ring(I), singular_generators(I))
else
error("algorithm invalid")
end
elseif base_ring(singular_polynomial_ring(I)) isa Singular.Integers
l = Singular.LibPrimdecint.minAssZ(singular_polynomial_ring(I), singular_generators(I))
else
error("base ring not implemented")
end
V = [ideal(R, i) for i in l]
if length(V) == 1 && is_one(gen(V[1], 1))
result = typeof(I)[]
cache && set_attribute!(I, :minimal_primes=>result)
return result
end
return V
end

# rerouting the procedure for minimal primes this way leads to
# much longer computations compared to the flattening of the coefficient
# field implemented above.
Expand Down
Loading