Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: remove hand-optimizations from queries #90

Merged
merged 1 commit into from
Apr 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 18 additions & 35 deletions queries/pandas/q1.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,51 +18,34 @@ def query() -> pd.DataFrame:
nonlocal lineitem
lineitem = lineitem()

lineitem_filtered = lineitem.loc[
:,
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hand written projection pushdown.

[
"l_quantity",
"l_extendedprice",
"l_discount",
"l_tax",
"l_returnflag",
"l_linestatus",
"l_shipdate",
"l_orderkey",
],
]
sel = lineitem_filtered.l_shipdate <= VAR1
lineitem_filtered = lineitem_filtered[sel]
lineitem_filtered["sum_qty"] = lineitem_filtered.l_quantity
lineitem_filtered["sum_base_price"] = lineitem_filtered.l_extendedprice
lineitem_filtered["avg_qty"] = lineitem_filtered.l_quantity
lineitem_filtered["avg_price"] = lineitem_filtered.l_extendedprice
lineitem_filtered["sum_disc_price"] = lineitem_filtered.l_extendedprice * (
sel = lineitem.l_shipdate <= VAR1
lineitem_filtered = lineitem[sel]

# This is lenient towards pandas as normally an optimizer should decide
# that this could be computed before the groupby aggregation.
# Other implementations don't enjoy this benefit.
lineitem_filtered["disc_price"] = lineitem_filtered.l_extendedprice * (
1 - lineitem_filtered.l_discount
)
lineitem_filtered["sum_charge"] = (
lineitem_filtered["charge"] = (
lineitem_filtered.l_extendedprice
* (1 - lineitem_filtered.l_discount)
* (1 + lineitem_filtered.l_tax)
)
lineitem_filtered["avg_disc"] = lineitem_filtered.l_discount
lineitem_filtered["count_order"] = lineitem_filtered.l_orderkey
gb = lineitem_filtered.groupby(["l_returnflag", "l_linestatus"])
gb = lineitem_filtered.groupby(["l_returnflag", "l_linestatus"], as_index=False)

total = gb.agg(
{
"sum_qty": "sum",
"sum_base_price": "sum",
"sum_disc_price": "sum",
"sum_charge": "sum",
"avg_qty": "mean",
"avg_price": "mean",
"avg_disc": "mean",
"count_order": "count",
}
sum_qty=pd.NamedAgg(column="l_quantity", aggfunc="sum"),
sum_base_price=pd.NamedAgg(column="l_extendedprice", aggfunc="sum"),
sum_disc_price=pd.NamedAgg(column="disc_price", aggfunc="sum"),
sum_charge=pd.NamedAgg(column="charge", aggfunc="sum"),
avg_qty=pd.NamedAgg(column="l_quantity", aggfunc="mean"),
avg_price=pd.NamedAgg(column="l_extendedprice", aggfunc="mean"),
avg_disc=pd.NamedAgg(column="l_discount", aggfunc="mean"),
count_order=pd.NamedAgg(column="l_orderkey", aggfunc="size"),
)

result_df = total.reset_index().sort_values(["l_returnflag", "l_linestatus"])
result_df = total.sort_values(["l_returnflag", "l_linestatus"])

return result_df # type: ignore[no-any-return]

Expand Down
13 changes: 8 additions & 5 deletions queries/pandas/q5.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,21 +42,24 @@ def query() -> pd.DataFrame:
supplier_ds = supplier_ds()

rsel = region_ds.r_name == "ASIA"
osel = (orders_ds.o_orderdate >= date1) & (orders_ds.o_orderdate < date2)
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Filters before the join is not a direct translation from SQL. The optimizer has to determine which predicates can pass which joins.

forders = orders_ds[osel]
fregion = region_ds[rsel]
jn1 = fregion.merge(nation_ds, left_on="r_regionkey", right_on="n_regionkey")
jn1 = region_ds.merge(nation_ds, left_on="r_regionkey", right_on="n_regionkey")
jn2 = jn1.merge(customer_ds, left_on="n_nationkey", right_on="c_nationkey")
jn3 = jn2.merge(forders, left_on="c_custkey", right_on="o_custkey")
jn3 = jn2.merge(orders_ds, left_on="c_custkey", right_on="o_custkey")
jn4 = jn3.merge(line_item_ds, left_on="o_orderkey", right_on="l_orderkey")
jn5 = supplier_ds.merge(
jn4,
left_on=["s_suppkey", "s_nationkey"],
right_on=["l_suppkey", "n_nationkey"],
)
jn5["revenue"] = jn5.l_extendedprice * (1.0 - jn5.l_discount)
jn5 = jn5[
(jn5.o_orderdate >= date1)
& (jn5.o_orderdate < date2)
& (jn5.r_name == rsel)
]
gb = jn5.groupby("n_name", as_index=False)["revenue"].sum()
result_df = gb.sort_values("revenue", ascending=False)

return result_df # type: ignore[no-any-return]

utils.run_query(Q_NUM, query)
Expand Down
2 changes: 1 addition & 1 deletion queries/polars/q2.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ def q() -> None:
.filter(pl.col("p_size") == var_1)
.filter(pl.col("p_type").str.ends_with(var_2))
.filter(pl.col("r_name") == var_3)
).cache()
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The optimizer has to find common subplans.

)

final_cols = [
"s_acctbal",
Expand Down