Skip to content

poojarao8/big-Q-hackathon

Repository files navigation

Big Q Hackathon

Running CUDA Quantum on Delta.

Please follow these instructions.

Running CUDA Quantum on non-Delta systems.

The easiest way to get started with CUDA Quantum is via the public Docker images. These images are available for x86_64 (or AMD64) and aarch64 CPU architectures.

ghcr.io/nvidia/cuda-quantum:latest

To pull the image, you will need to install docker and then run docker pull <image_name>. For instructions on how to run the CUDA Quantum container, refer to this webpage. Make sure to add --gpus all to the docker run command to expose all available GPUs to the container

CUDA Quantum programs run natively via backend-extensible circuit simulators. The most performant of these require an NVIDIA GPU (e.g. V100, A100, H100, A6000, A4000, etc.). If you do not have access to such a GPU (e.g. on your Macbook), then you will not be able to target these backends. If you have access to a remote workstation with an NVIDIA GPU that you can access during the hackathon, that would be best.

Targets

A --target <target-name> flag can be specified at compilation for C++ and at runtime for Python, which is a combination of the desired platform and simulator / QPU. To get additional information on the simulators and backends, go to TARGETS.md.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published