Skip to content

pysal/mgwr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

5e7fa3f · Sep 8, 2020
Jul 1, 2019
Sep 8, 2020
Mar 19, 2019
Sep 8, 2020
Jun 19, 2020
Sep 26, 2018
Dec 9, 2019
Sep 8, 2020
Sep 14, 2018
Jul 18, 2019
Dec 31, 2019
Jul 2, 2019
Jul 12, 2019
Sep 26, 2018
Jun 19, 2020
Nov 20, 2017
Jul 2, 2019

Repository files navigation

Multiscale Geographically Weighted Regression (MGWR)

Build Status Documentation Status PyPI version

This module provides functionality to calibrate multiscale (M)GWR as well as traditional GWR. It is built upon the sparse generalized linear modeling (spglm) module.

Features

  • GWR model calibration via iteratively weighted least squares for Gaussian, Poisson, and binomial probability models.
  • GWR bandwidth selection via golden section search or equal interval search
  • GWR-specific model diagnostics, including a multiple hypothesis test correction and local collinearity
  • Monte Carlo test for spatial variability of parameter estimate surfaces
  • GWR-based spatial prediction
  • MGWR model calibration via GAM iterative backfitting for Gaussian model
  • Parallel computing for GWR and MGWR
  • MGWR covariate-specific inference, including a multiple hypothesis test correction and local collinearity
  • Bandwidth confidence intervals for GWR and MGWR

Citation

Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269.