Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert D65103519 #2700

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 2 additions & 11 deletions torchrec/distributed/embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,6 @@
)

import torch
from tensordict import TensorDict
from torch import distributed as dist, nn
from torch.autograd.profiler import record_function
from torch.distributed._shard.sharding_spec import EnumerableShardingSpec
Expand Down Expand Up @@ -91,7 +90,6 @@
from torchrec.optim.fused import EmptyFusedOptimizer, FusedOptimizerModule
from torchrec.optim.keyed import CombinedOptimizer, KeyedOptimizer
from torchrec.sparse.jagged_tensor import _to_offsets, JaggedTensor, KeyedJaggedTensor
from torchrec.sparse.tensor_dict import maybe_td_to_kjt

try:
torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops")
Expand Down Expand Up @@ -1200,15 +1198,8 @@ def _compute_sequence_vbe_context(
def input_dist(
self,
ctx: EmbeddingCollectionContext,
features: TypeUnion[KeyedJaggedTensor, TensorDict],
features: KeyedJaggedTensor,
) -> Awaitable[Awaitable[KJTList]]:
need_permute: bool = True
if isinstance(features, TensorDict):
feature_keys = list(features.keys()) # pyre-ignore[6]
if self._features_order:
feature_keys = [feature_keys[i] for i in self._features_order]
need_permute = False
features = maybe_td_to_kjt(features, feature_keys) # pyre-ignore[6]
if self._has_uninitialized_input_dist:
self._create_input_dist(input_feature_names=features.keys())
self._has_uninitialized_input_dist = False
Expand All @@ -1218,7 +1209,7 @@ def input_dist(
unpadded_features = features
features = pad_vbe_kjt_lengths(unpadded_features)

if need_permute and self._features_order:
if self._features_order:
features = features.permute(
self._features_order,
# pyre-fixme[6]: For 2nd argument expected `Optional[Tensor]`
Expand Down
16 changes: 4 additions & 12 deletions torchrec/distributed/embeddingbag.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@

import torch
from fbgemm_gpu.permute_pooled_embedding_modules import PermutePooledEmbeddings
from tensordict import TensorDict
from torch import distributed as dist, nn, Tensor
from torch.autograd.profiler import record_function
from torch.distributed._shard.sharded_tensor import TensorProperties
Expand Down Expand Up @@ -95,7 +94,6 @@
from torchrec.optim.fused import EmptyFusedOptimizer, FusedOptimizerModule
from torchrec.optim.keyed import CombinedOptimizer, KeyedOptimizer
from torchrec.sparse.jagged_tensor import _to_offsets, KeyedJaggedTensor, KeyedTensor
from torchrec.sparse.tensor_dict import maybe_td_to_kjt

try:
torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops")
Expand Down Expand Up @@ -658,7 +656,9 @@ def __init__(
self._inverse_indices_permute_indices: Optional[torch.Tensor] = None
# to support mean pooling callback hook
self._has_mean_pooling_callback: bool = (
PoolingType.MEAN.value in self._pooling_type_to_rs_features
True
if PoolingType.MEAN.value in self._pooling_type_to_rs_features
else False
)
self._dim_per_key: Optional[torch.Tensor] = None
self._kjt_key_indices: Dict[str, int] = {}
Expand Down Expand Up @@ -1189,16 +1189,8 @@ def _create_inverse_indices_permute_indices(

# pyre-ignore [14]
def input_dist(
self,
ctx: EmbeddingBagCollectionContext,
features: Union[KeyedJaggedTensor, TensorDict],
self, ctx: EmbeddingBagCollectionContext, features: KeyedJaggedTensor
) -> Awaitable[Awaitable[KJTList]]:
if isinstance(features, TensorDict):
feature_keys = list(features.keys()) # pyre-ignore[6]
if len(self._features_order) > 0:
feature_keys = [feature_keys[i] for i in self._features_order]
self._has_features_permute = False # feature_keys are in order
features = maybe_td_to_kjt(features, feature_keys) # pyre-ignore[6]
ctx.variable_batch_per_feature = features.variable_stride_per_key()
ctx.inverse_indices = features.inverse_indices_or_none()
if self._has_uninitialized_input_dist:
Expand Down
32 changes: 6 additions & 26 deletions torchrec/distributed/test_utils/test_sharding.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,6 @@ def gen_model_and_input(
long_indices: bool = True,
global_constant_batch: bool = False,
num_inputs: int = 1,
input_type: str = "kjt", # "kjt" or "td"
) -> Tuple[nn.Module, List[Tuple[ModelInput, List[ModelInput]]]]:
torch.manual_seed(0)
if dedup_feature_names:
Expand Down Expand Up @@ -178,9 +177,9 @@ def gen_model_and_input(
feature_processor_modules=feature_processor_modules,
)
inputs = []
if input_type == "kjt" and generate == ModelInput.generate_variable_batch_input:
for _ in range(num_inputs):
inputs.append(
for _ in range(num_inputs):
inputs.append(
(
cast(VariableBatchModelInputCallable, generate)(
average_batch_size=batch_size,
world_size=world_size,
Expand All @@ -189,26 +188,8 @@ def gen_model_and_input(
weighted_tables=weighted_tables or [],
global_constant_batch=global_constant_batch,
)
)
elif generate == ModelInput.generate:
for _ in range(num_inputs):
inputs.append(
ModelInput.generate(
world_size=world_size,
tables=tables,
dedup_tables=dedup_tables,
weighted_tables=weighted_tables or [],
num_float_features=num_float_features,
variable_batch_size=variable_batch_size,
batch_size=batch_size,
long_indices=long_indices,
input_type=input_type,
)
)
else:
for _ in range(num_inputs):
inputs.append(
cast(ModelInputCallable, generate)(
if generate == ModelInput.generate_variable_batch_input
else cast(ModelInputCallable, generate)(
world_size=world_size,
tables=tables,
dedup_tables=dedup_tables,
Expand All @@ -219,6 +200,7 @@ def gen_model_and_input(
long_indices=long_indices,
)
)
)
return (model, inputs)


Expand Down Expand Up @@ -315,7 +297,6 @@ def sharding_single_rank_test(
global_constant_batch: bool = False,
world_size_2D: Optional[int] = None,
node_group_size: Optional[int] = None,
input_type: str = "kjt", # "kjt" or "td"
) -> None:
with MultiProcessContext(rank, world_size, backend, local_size) as ctx:
# Generate model & inputs.
Expand All @@ -338,7 +319,6 @@ def sharding_single_rank_test(
batch_size=batch_size,
feature_processor_modules=feature_processor_modules,
global_constant_batch=global_constant_batch,
input_type=input_type,
)
global_model = global_model.to(ctx.device)
global_input = inputs[0][0].to(ctx.device)
Expand Down
41 changes: 0 additions & 41 deletions torchrec/distributed/tests/test_sequence_model_parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -376,44 +376,3 @@ def _test_sharding(
variable_batch_per_feature=variable_batch_per_feature,
global_constant_batch=True,
)


@skip_if_asan_class
class TDSequenceModelParallelTest(SequenceModelParallelTest):

def test_sharding_variable_batch(self) -> None:
pass

def _test_sharding(
self,
sharders: List[TestEmbeddingCollectionSharder],
backend: str = "gloo",
world_size: int = 2,
local_size: Optional[int] = None,
constraints: Optional[Dict[str, ParameterConstraints]] = None,
model_class: Type[TestSparseNNBase] = TestSequenceSparseNN,
qcomms_config: Optional[QCommsConfig] = None,
apply_optimizer_in_backward_config: Optional[
Dict[str, Tuple[Type[torch.optim.Optimizer], Dict[str, Any]]]
] = None,
variable_batch_size: bool = False,
variable_batch_per_feature: bool = False,
) -> None:
self._run_multi_process_test(
callable=sharding_single_rank_test,
world_size=world_size,
local_size=local_size,
model_class=model_class,
tables=self.tables,
embedding_groups=self.embedding_groups,
sharders=sharders,
optim=EmbOptimType.EXACT_SGD,
backend=backend,
constraints=constraints,
qcomms_config=qcomms_config,
apply_optimizer_in_backward_config=apply_optimizer_in_backward_config,
variable_batch_size=variable_batch_size,
variable_batch_per_feature=variable_batch_per_feature,
global_constant_batch=True,
input_type="td",
)
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ def main(

tables = [
EmbeddingBagConfig(
num_embeddings=max(i + 1, 100) * 1000,
num_embeddings=(i + 1) * 1000,
embedding_dim=dim_emb,
name="table_" + str(i),
feature_names=["feature_" + str(i)],
Expand All @@ -169,7 +169,7 @@ def main(
]
weighted_tables = [
EmbeddingBagConfig(
num_embeddings=max(i + 1, 100) * 1000,
num_embeddings=(i + 1) * 1000,
embedding_dim=dim_emb,
name="weighted_table_" + str(i),
feature_names=["weighted_feature_" + str(i)],
Expand Down
10 changes: 2 additions & 8 deletions torchrec/modules/embedding_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@
pooling_type_to_str,
)
from torchrec.sparse.jagged_tensor import JaggedTensor, KeyedJaggedTensor, KeyedTensor
from torchrec.sparse.tensor_dict import maybe_td_to_kjt


@torch.fx.wrap
Expand Down Expand Up @@ -219,10 +218,7 @@ def __init__(
self._feature_names: List[List[str]] = [table.feature_names for table in tables]
self.reset_parameters()

def forward(
self,
features: KeyedJaggedTensor, # can also take TensorDict as input
) -> KeyedTensor:
def forward(self, features: KeyedJaggedTensor) -> KeyedTensor:
"""
Run the EmbeddingBagCollection forward pass. This method takes in a `KeyedJaggedTensor`
and returns a `KeyedTensor`, which is the result of pooling the embeddings for each feature.
Expand All @@ -233,7 +229,6 @@ def forward(
KeyedTensor
"""
flat_feature_names: List[str] = []
features = maybe_td_to_kjt(features, None)
for names in self._feature_names:
flat_feature_names.extend(names)
inverse_indices = reorder_inverse_indices(
Expand Down Expand Up @@ -453,7 +448,7 @@ def __init__( # noqa C901

def forward(
self,
features: KeyedJaggedTensor, # can also take TensorDict as input
features: KeyedJaggedTensor,
) -> Dict[str, JaggedTensor]:
"""
Run the EmbeddingBagCollection forward pass. This method takes in a `KeyedJaggedTensor`
Expand All @@ -466,7 +461,6 @@ def forward(
Dict[str, JaggedTensor]
"""

features = maybe_td_to_kjt(features, None)
feature_embeddings: Dict[str, JaggedTensor] = {}
jt_dict: Dict[str, JaggedTensor] = features.to_dict()
for i, emb_module in enumerate(self.embeddings.values()):
Expand Down
Loading