forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Release RTMDet models and configs. (open-mmlab#8870)
* [Feature] Release RTMDet models and configs. * update config * update link and metafile * update
- Loading branch information
Showing
9 changed files
with
418 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# RTMDet | ||
|
||
<!-- [ALGORITHM] --> | ||
|
||
## Abstract | ||
|
||
Our tech-report will be released soon. | ||
|
||
<div align=center> | ||
<img src="https://user-images.githubusercontent.com/12907710/192182907-f9a671d6-89cb-4d73-abd8-c2b9dada3c66.png"/> | ||
</div> | ||
|
||
## Results and Models | ||
|
||
| Backbone | size | box AP | Params(M) | FLOPS(G) | TRT-FP16-Latency(ms) | Config | Download | | ||
| :---------: | :--: | :----: | :-------: | :------: | :------------------: | :----------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | ||
| RTMDet-tiny | 640 | 40.9 | 4.8 | 8.1 | 0.98 | [config](./rtmdet_tiny_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_tiny_8xb32-300e_coco/rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_tiny_8xb32-300e_coco/rtmdet_s_8xb32-300e_coco_20220902_112414.log.json) | | ||
| RTMDet-s | 640 | 44.5 | 8.89 | 14.8 | 1.22 | [config](./rtmdet_s_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_s_8xb32-300e_coco/rtmdet_s_8xb32-300e_coco_20220905_161602-a61dc0d2.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_s_8xb32-300e_coco/rtmdet_s_8xb32-300e_coco_20220905_161602.log.json) | | ||
| RTMDet-m | 640 | 49.1 | 24.71 | 39.27 | 1.62 | [config](./rtmdet_m_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_m_8xb32-300e_coco/rtmdet_m_8xb32-300e_coco_20220719_112220-229f527c.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_m_8xb32-300e_coco/rtmdet_m_8xb32-300e_coco_20220719_112220.log.json) | | ||
| RTMDet-l | 640 | 51.3 | 52.3 | 80.23 | 2.44 | [config](./rtmdet_l_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_l_8xb32-300e_coco/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_l_8xb32-300e_coco/rtmdet_l_8xb32-300e_coco_20220719_112030.log.json) | | ||
| RTMDet-x | 640 | 52.6 | 94.86 | 141.67 | 3.10 | [config](./rtmdet_x_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_x_8xb32-300e_coco/rtmdet_x_8xb32-300e_coco_20220715_230555-cc79b9ae.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_x_8xb32-300e_coco/rtmdet_x_8xb32-300e_coco_20220715_230555.log.json) | | ||
|
||
**Note**: | ||
|
||
1. The inference speed is measured on an NVIDIA 3090 GPU with TensorRT 8.4.3, cuDNN 8.2.0, FP16, batch size=1, and the without NMS. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
Collections: | ||
- Name: RTMDet | ||
Metadata: | ||
Training Data: COCO | ||
Training Techniques: | ||
- AdamW | ||
- Flat Cosine Annealing | ||
Training Resources: 8x A100 GPUs | ||
Architecture: | ||
- CSPNeXt | ||
- CSPNeXtPAFPN | ||
README: configs/rtmdet/README.md | ||
Code: | ||
URL: https://github.com/open-mmlab/mmdetection/blob/v3.0.0rc1/mmdet/models/detectors/rtmdet.py#L6 | ||
Version: v3.0.0rc1 | ||
|
||
Models: | ||
- Name: rtmdet_tiny_8xb32-300e_coco | ||
In Collection: RTMDet | ||
Config: configs/rtmdet/rtmdet_tiny_8xb32-300e_coco.py | ||
Metadata: | ||
Training Memory (GB): 7.6 | ||
Epochs: 300 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
box AP: 40.9 | ||
Weights: https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_tiny_8xb32-300e_coco/rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth | ||
|
||
- Name: rtmdet_s_8xb32-300e_coco | ||
In Collection: RTMDet | ||
Config: configs/rtmdet/rtmdet_s_8xb32-300e_coco.py | ||
Metadata: | ||
Training Memory (GB): 7.6 | ||
Epochs: 300 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
box AP: 44.5 | ||
Weights: https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_s_8xb32-300e_coco/rtmdet_s_8xb32-300e_coco_20220905_161602-a61dc0d2.pth | ||
|
||
- Name: rtmdet_m_8xb32-300e_coco | ||
In Collection: RTMDet | ||
Config: configs/rtmdet/rtmdet_m_8xb32-300e_coco.py | ||
Metadata: | ||
Training Memory (GB): 7.6 | ||
Epochs: 300 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
box AP: 49.1 | ||
Weights: https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_m_8xb32-300e_coco/rtmdet_m_8xb32-300e_coco_20220719_112220-229f527c.pth | ||
|
||
- Name: rtmdet_l_8xb32-300e_coco | ||
In Collection: RTMDet | ||
Config: configs/rtmdet/rtmdet_l_8xb32-300e_coco.py | ||
Metadata: | ||
Training Memory (GB): 7.6 | ||
Epochs: 300 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
box AP: 51.3 | ||
Weights: https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_l_8xb32-300e_coco/rtmdet_l_8xb32-300e_coco_20220719_112030-5a0be7c4.pth | ||
|
||
- Name: rtmdet_x_8xb32-300e_coco | ||
In Collection: RTMDet | ||
Config: configs/rtmdet/rtmdet_x_8xb32-300e_coco.py | ||
Metadata: | ||
Training Memory (GB): 7.6 | ||
Epochs: 300 | ||
Results: | ||
- Task: Object Detection | ||
Dataset: COCO | ||
Metrics: | ||
box AP: 52.6 | ||
Weights: https://download.openmmlab.com/mmdetection/v3.0/rtmdet/rtmdet_x_8xb32-300e_coco/rtmdet_x_8xb32-300e_coco_20220715_230555-cc79b9ae.pth |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
_base_ = [ | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py', | ||
'../_base_/datasets/coco_detection.py' | ||
] | ||
model = dict( | ||
type='RTMDet', | ||
data_preprocessor=dict( | ||
type='DetDataPreprocessor', | ||
mean=[103.53, 116.28, 123.675], | ||
std=[57.375, 57.12, 58.395], | ||
bgr_to_rgb=False, | ||
batch_augments=None), | ||
backbone=dict( | ||
type='CSPNeXt', | ||
arch='P5', | ||
expand_ratio=0.5, | ||
deepen_factor=1, | ||
widen_factor=1, | ||
channel_attention=True, | ||
norm_cfg=dict(type='SyncBN'), | ||
act_cfg=dict(type='SiLU')), | ||
neck=dict( | ||
type='CSPNeXtPAFPN', | ||
in_channels=[256, 512, 1024], | ||
out_channels=256, | ||
num_csp_blocks=3, | ||
expand_ratio=0.5, | ||
norm_cfg=dict(type='SyncBN'), | ||
act_cfg=dict(type='SiLU')), | ||
bbox_head=dict( | ||
type='RTMDetSepBNHead', | ||
num_classes=80, | ||
in_channels=256, | ||
stacked_convs=2, | ||
feat_channels=256, | ||
anchor_generator=dict( | ||
type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]), | ||
bbox_coder=dict(type='DistancePointBBoxCoder'), | ||
loss_cls=dict( | ||
type='QualityFocalLoss', | ||
use_sigmoid=True, | ||
beta=2.0, | ||
loss_weight=1.0), | ||
loss_bbox=dict(type='GIoULoss', loss_weight=2.0), | ||
with_objectness=False, | ||
exp_on_reg=True, | ||
share_conv=True, | ||
pred_kernel_size=1, | ||
norm_cfg=dict(type='SyncBN'), | ||
act_cfg=dict(type='SiLU')), | ||
train_cfg=dict( | ||
assigner=dict(type='DynamicSoftLabelAssigner', topk=13), | ||
allowed_border=-1, | ||
pos_weight=-1, | ||
debug=False), | ||
test_cfg=dict( | ||
nms_pre=1000, | ||
min_bbox_size=0, | ||
score_thr=0.05, | ||
nms=dict(type='nms', iou_threshold=0.6), | ||
max_per_img=100), | ||
) | ||
|
||
train_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
file_client_args={{_base_.file_client_args}}), | ||
dict(type='LoadAnnotations', with_bbox=True), | ||
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0), | ||
dict( | ||
type='RandomResize', | ||
scale=(1280, 1280), | ||
ratio_range=(0.1, 2.0), | ||
keep_ratio=True), | ||
dict(type='RandomCrop', crop_size=(640, 640)), | ||
dict(type='YOLOXHSVRandomAug'), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), | ||
dict( | ||
type='CachedMixUp', | ||
img_scale=(640, 640), | ||
ratio_range=(1.0, 1.0), | ||
max_cached_images=20, | ||
pad_val=(114, 114, 114)), | ||
dict(type='PackDetInputs') | ||
] | ||
|
||
train_pipeline_stage2 = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
file_client_args={{_base_.file_client_args}}), | ||
dict(type='LoadAnnotations', with_bbox=True), | ||
dict( | ||
type='RandomResize', | ||
scale=(640, 640), | ||
ratio_range=(0.1, 2.0), | ||
keep_ratio=True), | ||
dict(type='RandomCrop', crop_size=(640, 640)), | ||
dict(type='YOLOXHSVRandomAug'), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), | ||
dict(type='PackDetInputs') | ||
] | ||
|
||
test_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
file_client_args={{_base_.file_client_args}}), | ||
dict(type='Resize', scale=(640, 640), keep_ratio=True), | ||
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), | ||
dict( | ||
type='PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor')) | ||
] | ||
|
||
train_dataloader = dict( | ||
batch_size=32, | ||
num_workers=10, | ||
batch_sampler=None, | ||
pin_memory=True, | ||
dataset=dict(pipeline=train_pipeline)) | ||
val_dataloader = dict( | ||
batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline)) | ||
test_dataloader = val_dataloader | ||
|
||
max_epochs = 300 | ||
stage2_num_epochs = 20 | ||
base_lr = 0.004 | ||
interval = 10 | ||
|
||
train_cfg = dict( | ||
max_epochs=max_epochs, | ||
val_interval=interval, | ||
dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)]) | ||
|
||
# optimizer | ||
optim_wrapper = dict( | ||
_delete_=True, | ||
type='OptimWrapper', | ||
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05), | ||
paramwise_cfg=dict( | ||
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True)) | ||
|
||
# learning rate | ||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', | ||
start_factor=1.0e-5, | ||
by_epoch=False, | ||
begin=0, | ||
end=1000), | ||
dict( | ||
# use cosine lr from 150 to 300 epoch | ||
type='CosineAnnealingLR', | ||
eta_min=base_lr * 0.05, | ||
begin=max_epochs // 2, | ||
end=max_epochs, | ||
T_max=max_epochs // 2, | ||
by_epoch=True, | ||
convert_to_iter_based=True), | ||
] | ||
|
||
# hooks | ||
default_hooks = dict( | ||
checkpoint=dict( | ||
interval=interval, | ||
max_keep_ckpts=3 # only keep latest 3 checkpoints | ||
)) | ||
custom_hooks = [ | ||
dict( | ||
type='EMAHook', | ||
ema_type='ExpMomentumEMA', | ||
momentum=0.0002, | ||
update_buffers=True, | ||
priority=49), | ||
dict( | ||
type='PipelineSwitchHook', | ||
switch_epoch=max_epochs - stage2_num_epochs, | ||
switch_pipeline=train_pipeline_stage2) | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
_base_ = './rtmdet_l_8xb32-300e_coco.py' | ||
|
||
model = dict( | ||
backbone=dict(deepen_factor=0.67, widen_factor=0.75), | ||
neck=dict(in_channels=[192, 384, 768], out_channels=192, num_csp_blocks=2), | ||
bbox_head=dict(in_channels=192, feat_channels=192)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
_base_ = './rtmdet_l_8xb32-300e_coco.py' | ||
checkpoint = 'TODO:imagenet_pretrain' # noqa | ||
model = dict( | ||
backbone=dict( | ||
deepen_factor=0.33, | ||
widen_factor=0.5, | ||
init_cfg=dict( | ||
type='Pretrained', prefix='backbone.', checkpoint=checkpoint)), | ||
neck=dict(in_channels=[128, 256, 512], out_channels=128, num_csp_blocks=1), | ||
bbox_head=dict(in_channels=128, feat_channels=128, exp_on_reg=False)) | ||
|
||
train_pipeline = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
file_client_args={{_base_.file_client_args}}), | ||
dict(type='LoadAnnotations', with_bbox=True), | ||
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0), | ||
dict( | ||
type='RandomResize', | ||
scale=(1280, 1280), | ||
ratio_range=(0.5, 2.0), | ||
keep_ratio=True), | ||
dict(type='RandomCrop', crop_size=(640, 640)), | ||
dict(type='YOLOXHSVRandomAug'), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), | ||
dict( | ||
type='CachedMixUp', | ||
img_scale=(640, 640), | ||
ratio_range=(1.0, 1.0), | ||
max_cached_images=20, | ||
pad_val=(114, 114, 114)), | ||
dict(type='PackDetInputs') | ||
] | ||
|
||
train_pipeline_stage2 = [ | ||
dict( | ||
type='LoadImageFromFile', | ||
file_client_args={{_base_.file_client_args}}), | ||
dict(type='LoadAnnotations', with_bbox=True), | ||
dict( | ||
type='RandomResize', | ||
scale=(640, 640), | ||
ratio_range=(0.5, 2.0), | ||
keep_ratio=True), | ||
dict(type='RandomCrop', crop_size=(640, 640)), | ||
dict(type='YOLOXHSVRandomAug'), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))), | ||
dict(type='PackDetInputs') | ||
] | ||
|
||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) | ||
|
||
custom_hooks = [ | ||
dict( | ||
type='EMAHook', | ||
ema_type='ExpMomentumEMA', | ||
momentum=0.0002, | ||
update_buffers=True, | ||
priority=49), | ||
dict( | ||
type='PipelineSwitchHook', | ||
switch_epoch=280, | ||
switch_pipeline=train_pipeline_stage2) | ||
] |
Oops, something went wrong.