-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitEllipse.py
460 lines (317 loc) · 11.5 KB
/
fitEllipse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
""" 2D Ellipse fitting
Fits an ellipse to a set of points (x_i, y_i) using the canonical
representation:
a * x^2 + b * x * y + c * y^2 + d * x + e * y + f = 0 (1)
Provided features
-----------------
The module provides several function related to ellipses:
`fit_ellipse`:
fits an ellipse from a set of points and return the parameters
of the canonical representation (see above)
`get_parameters`:
converts canonical parameters into intuitive representation i.e.
major and minor radii
let a_ be the vector a_ = [a, b, c, d, e, f]'
Let D be the (N x 6) design matrix:
D = [z_1 z_2 ... z_n]'
where
z_i = [ x_i^2, x_i * y_i, y_i^2, x_i, y_i, 1 ]'
We want to minimize
E = \sum_i (a_' * z_i)^2 = || D * a_ ||^2 = a_' * S * a
where
S = D' * D
If equation (1) corresponds to an ellipse we must have:
4 * a * c - b^2 > 0
Since equation (1) is unique up to a scaling factor we can impose:
4 * a * c - b^2 = 1
which can be written in matrix form as:
a_' * C * a_ = 1
with
::
C = | 0 0 2 0 0 0 |
| 0 -1 0 0 0 0 |
| 2 0 0 0 0 0 |
| 0 0 0 0 0 0 |
| 0 0 0 0 0 0 |
| 0 0 0 0 0 0 |
So the problem reduces to:
a_ = argmin a_' S a_
s.t. (2)
a_' * C * a_ = 1
which is equivalent to solving:
S a_ = l * C * a_ (3)
where l is a Lagrange multiplier.
Equation (2) is just a generalized eigen value problem. And the solution
to (1) is the eigen vector corresponding to the smallest positive eigen
value of (2).
It can be prooved that (3) has 2 negative eigen values and one positive.
The biggest eigen value the corresponds to the solution.
Since C has negative eigen values solvers in scipy/numpy are not able
to perform the eigen decomposition. To solve (2) we reduce the problem
to a 3x3 eigen value problem for wich we can solve the problem
analytically. For that, we split S and C into 3x3 blocks.
Let's define:
::
S = | A B |
| B' E |
C = | F 0 |
| 0 0 |
a_ = [x' y']'
Rewritting (3) we get:
A * x + B * y = l * F * x
B'* x + E * y = 0
which gives:
y = - E^(-1) * B' * x
(A - B * E^(-1) * B') * x = l * F * x (4)
Equation (4) is a 3x3 eigen value problem that we can solve analytically.
:Notes:
Detailed explanations can be found in:
*Direct Least square fitting of Ellipses*. A. Fitzgibbon, M. Pilu,
and R. B. Fisher. Pattern Analysis and Machine Intelligence. 1999
:Author: Alexis Mignon (c) 2012
:E-mail: [email protected]
"""
import numpy as np
from scipy.linalg import inv, eigh, solve
def _find_max_eigval(S):
"""
Finds the biggest generalized eigen value of the system
S * x = l * C * x
where
::
C = | 0 0 2 |
| 0 -1 0 |
| 2 0 1 |
Parameters:
-----------
S : 3x3 matrix
Returns:
--------
the highest eigen value
"""
a = S[0,0]
b = S[0,1]
c = S[0,2]
d = S[1,1]
e = S[1,2]
f = S[2,2]
# computes the coefficients of the characteristic polynomial
# det(S - x * C) = 0
# Since the matrix is 3x3 we have a 3rd degree polynomial
# _a * x**3 + _b * x**2 + _c * x + _d
_a = -4
_b = 4 * (c - d)
_c = a * f - 4 * b * e + 4 * c * d - c * c
_d = a * d * f - b * b * f - a * e * e + 2 * b * c * e - c * c * d
# computes the roots of the polynomial
# there must be 2 negative roots and one
# positive, i.e. the biggest one.
x2, x1, x0 = sorted(np.roots([_a, _b, _c, _d] ))
return x0
def _find_max_eigvec(S):
"""
Computes the positive eigen value and the corresponding
eigen vector of the system:
S * x = l * C * x
where
::
C = | 0 0 2 |
| 0 -1 0 |
| 2 0 1 |
Parameters:
-----------
S : 3x3 matrix
Returns:
--------
(l, u)
l : float
the positive eigen value
u : the corresponding eigen vector
"""
l = _find_max_eigval(S)
a11 = S[0,0]
a12 = S[0,1]
a13 = S[0,2]
a22 = S[1,1]
a23 = S[1,2]
u = np.array([
a12 * a23 - (a13 - 2*l) * (a22 + l),
a12 * (a13 - 2*l) - a23 * a11,
a11 * (a22 + l) - a12 * a12
])
c = 4 * u[0] * u[2] - u[1] * u[1]
return l, u/np.sqrt(c)
def fit_ellipse(X):
""" Fit an ellipse.
Computes the best least squares parameters of an ellipse expressed as:
a * x^2 + b * x * y + c * y^2 + d * x + e * y + f = 0
Parameters
----------
X : N x 2 array
an array of N 2d points.
Returns:
--------
an array containing the parameters:
[ a , b, c, d, e, f]
"""
x = X[:,0]
y = X[:,1]
# building the design matrix
D = np.vstack([ x*x, x*y, y*y, x, y, np.ones(X.shape[0])]).T
S = np.dot(D.T, D)
S11 = S[:3][:,:3]
S12 = S[:3][:,3:]
S22 = S[3:][:,3:]
S22_inv = inv(S22)
S22_inv_S21 = np.dot(inv(S22), S12.T)
Sc = S11 - np.dot(S12, S22_inv_S21)
l, a = _find_max_eigvec(Sc)
b = - np.dot(S22_inv_S21, a)
return np.hstack([a,b])
def create_ellipse(r, xc, alpha, n=100, angle_range=(0,2*np.pi)):
""" Create points on an ellipse with uniform angle step
Parameters
----------
r: tuple
(rx, ry): major an minor radii of the ellipse. Radii are supposed to
be given in descending order. No check will be done.
xc : tuple
x and y coordinates of the center of the ellipse
alpha : float
angle between the x axis and the major axis of the ellipse
n : int, optional
The number of points to create
angle_range : tuple (a0, a1)
angles between which points are created.
Returns
-------
(n * 2) array of points
"""
R = np.array([
[np.cos(alpha), -np.sin(alpha)],
[np.sin(alpha), np.cos(alpha)]
])
a0,a1 = angle_range
angles = np.linspace(a0,a1,n)
X = np.vstack([ np.cos(angles) * r[0], np.sin(angles) * r[1]]).T
return np.dot(X,R.T) + xc
def create_cassini_oval(r, xc, alpha, n=100, angle_range=(0,2*np.pi)):
""" Create points on an Cassini oval with uniform angle step
reference: http://virtualmathmuseum.org/Curves/cassinian_oval/Cassinian_Oval.pdf
Parameters
----------
r: tuple
(rx, ry): major an minor radii of the ellipse. Radii are supposed to
be given in descending order. No check will be done.
xc : tuple
x and y coordinates of the center of the ellipse
alpha : float
angle between the x axis and the major axis of the ellipse
n : int, optional
The number of points to create
angle_range : tuple (a0, a1)
angles between which points are created.
Returns
-------
(n * 2) array of points
"""
R = np.array([
[np.cos(alpha), -np.sin(alpha)],
[np.sin(alpha), np.cos(alpha)]
])
a0,a1 = angle_range
angles = np.linspace(a0,a1,n)
a = np.sqrt((r[0]**2-r[1]**2)/2)
b = np.sqrt((r[0]**2+r[1]**2)/2)
M = 2*a**2*np.cos(2*angles)+2*np.sqrt((-a**4+b**4)+a**4*np.cos(2*angles)**2)
X = np.vstack([ np.cos(angles) *np.sqrt(M/2), np.sin(angles) * np.sqrt(M/2)]).T
# x = np.cos(angles)*np.sqrt(M/2) + xc[0]
# y = np.sin(angles)*np.sqrt(M/2) + xc[1]
# points = np.array([[x[i],y[i]] for i in range(angles.size)])
return np.dot(X,R.T) + xc
def get_parameters(x):
"""
Computes 'natural' parameters of an ellipse given the parameters
of the canonical equation:
a * x^2 + b * x * y + c * y^2 + d * x + e * y + f = 0
Parameters:
-----------
x : array_like
An array of 6 elements corresponding to the coefficients of the
canonical equation (see above)
Returns:
--------
tuple (rx, ry), (xc, yc), alpha
(rx, ry) : tuple
Radii of the major and minor axes
(xc, yc) : tuple
coordinates of the center
alpha : float
angle between the x axis and the major axis
:Note:
Computed the parameters of the ellipse when it is expressed as:
x'^2/rx^2 + y'/ry^2 = 1
where x' and y' correpsond to the rotated coordinates:
x' = cos(alpha)(x-xc) + sin(alpha)(y-yc)
y' = -sin(alpha)(x-xc) + cos(alpha)(y-yc)
Which can be put in matrix form as
(X-Xc)' R D R' (X-Xc) = 1
where
::
X = [x y] and Xc = [xc yc]
R = [ cos(alpha) -sin(alpha)]
[ sin(alpha) cos(alpha) ]
D = [ 1/rx^2 0 ]
[ 0 1/ry^2 ]
Parameters are given as the parameter of the conic:
a * x^2 + b * x * y + c * y^2 + d * x + e * y + f = 0
In matrix form we have:
X' A X + B' X + f = 0
where
::
X = [ x y ]'
A = [ a b/2]
[b/2 c ]
B = [ d e ]'
Any ellipse can be written as:
(X - Xc)' A (X - Xc) = r^2
which develops in:
X'A X - 2 * Xc' A X + Xc' A Xc - r^2 = 0
So we have:
B = - 2 * A Xc
and
f = Xc' A Xc - r^2
and thus:
Xc = -1/2 * A^(-1) B
r^2 = Xc' A Xc - f
We also see that
1/r^2 * (X - Xc)' A (X - Xc) = (X-Xc)' R D R' (X-Xc) = 1
By performing eigen decomposition on A = U L U', we obtain
R = U
and
lx / r^2 = 1/rx^2
ly / r^2 = 1/ry^2
hence
rx^2 = r^2 / lx
ry^2 = r^2 / ly
the angle alpha is finally determined using
::
U = | u11, u12 | = | cos(alpha) sin(alpha)|
|-u12, u22 | | -sin(alpha) cos(alpha)|
alpha = sign(u12) * arccos(u11)
"""
a,b,c,d,e,f = x
A = np.array([
[ a, b/2 ],
[b/2, c ]
])
B = np.array([d,e])
w,u = eigh(A)
Xc = solve(-2*A,B)
r2 = -0.5 * np.inner(Xc,B) - f
rr2 = r2 / w
alpha = np.arccos(u[0,0])
if alpha > np.pi/2:
alpha = alpha - np.pi
alpha *= np.sign(u[0,1])
return tuple(np.sqrt(rr2)), tuple(Xc), alpha