Skip to content

Commit

Permalink
initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
RuilinLi committed May 5, 2020
0 parents commit bee2c67
Show file tree
Hide file tree
Showing 23 changed files with 2,222 additions and 0 deletions.
3 changes: 3 additions & 0 deletions .Rbuildignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
^mrcox\.Rproj$
^\.Rproj\.user$
^LICENSE\.md$
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
.Rproj.user
.Rhistory
.DS_Store
18 changes: 18 additions & 0 deletions .ipynb_checkpoints/DESCRIPTION-checkpoint
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
Package: mrcox
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R:
person(given = "First",
family = "Last",
role = c("aut", "cre"),
email = "[email protected]",
comment = c(ORCID = "YOUR-ORCID-ID"))
Description: What the package does (one paragraph).
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Imports:
Rcpp
RoxygenNote: 7.1.0
LinkingTo:
Rcpp, RcppEigen
10 changes: 10 additions & 0 deletions .ipynb_checkpoints/NAMESPACE-checkpoint
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
# Generated by roxygen2: do not edit by hand

export(compute_dual_norm)
export(compute_residual)
export(get_dual_norm)
export(get_residual)
export(solve_aligned)
export(solve_path)
importFrom(Rcpp,sourceCpp)
useDynLib(mrcox, .registration = TRUE)
18 changes: 18 additions & 0 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
Package: mrcox
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R:
person(given = "First",
family = "Last",
role = c("aut", "cre"),
email = "[email protected]",
comment = c(ORCID = "YOUR-ORCID-ID"))
Description: What the package does (one paragraph).
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Imports:
Rcpp
RoxygenNote: 7.1.0
LinkingTo:
Rcpp, RcppEigen
2 changes: 2 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
YEAR: 2020
COPYRIGHT HOLDER: Ruilin Li
21 changes: 21 additions & 0 deletions LICENSE.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# MIT License

Copyright (c) 2020 Ruilin Li

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
17 changes: 17 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# Generated by roxygen2: do not edit by hand

export(basil)
export(compute_dual_norm)
export(compute_residual)
export(get_dual_norm)
export(get_residual)
export(solve_aligned)
importFrom(Rcpp,sourceCpp)
importFrom(data.table,':=')
importFrom(data.table,as.data.table)
importFrom(data.table,set)
importFrom(dplyr,filter)
importFrom(dplyr,n)
importFrom(dplyr,select)
importFrom(magrittr,"%>%")
useDynLib(mrcox, .registration = TRUE)
17 changes: 17 additions & 0 deletions R/.ipynb_checkpoints/RcppExports-checkpoint.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

fit_aligned <- function(X, status, rankmin, rankmax, order_list, B0, lambda_1_all, lambda_2_all, pfac, step_size = 1.0, niter = 2000L, linesearch_beta = 1.1, eps = 1e-5) {
.Call(`_mrcox_fit_aligned`, X, status, rankmin, rankmax, order_list, B0, lambda_1_all, lambda_2_all, pfac, step_size, niter, linesearch_beta, eps)
}

#' @export
compute_dual_norm <- function(grad, alpha, tol) {
.Call(`_mrcox_compute_dual_norm`, grad, alpha, tol)
}

#' @export
compute_residual <- function(X, status, rankmin, rankmax, order_list, v) {
.Call(`_mrcox_compute_residual`, X, status, rankmin, rankmax, order_list, v)
}

244 changes: 244 additions & 0 deletions R/.ipynb_checkpoints/basil-checkpoint.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,244 @@
#' @importFrom data.table ':='
#' @importFrom data.table set as.data.table
#' @importFrom dplyr filter select
#' @importFrom magrittr %>%
#' @export
basil = function(genotype.pfile, phe.file, responsid, covs = NULL,
nlambda = 100, lambda.min.ratio = 0.01,
alpha=NULL, p.factor = NULL,configs = NULL,
num_lambda_per_iter = 10)
{
### Get ids specified by psam --------------------------------------
psamid = data.table::fread(paste0(genotype.pfile, '.psam'),
colClasses = list(character=c("IID")), select = c("IID"))
psamid = psamid$IID

### Read responses and covariates --------------------------------------
status = paste0("coxnet_status_f.", responsid, ".0.0")
responses = paste0("coxnet_y_f.", responsid, ".0.0")

phe = data.table::fread(phe.file,
colClasses = list(character=c("FID"), factor=c("split")),
select = c("FID", "split", status, responses, covs))
# Do not allow NA in any column
phe=phe[complete.cases(phe), ]
names(phe)[1] = "ID"

### Filter out responses with too few events --------------------------------------
id_to_remove = NULL
for(i in 1:length(status)){
s = status[i]
num_event = sum(phe %>% filter(split == "train") %>% select(all_of(s)))
cat(paste("Code:", responsid[i]))
cat(paste("Number of events in validation set", sum(phe %>% filter(split == "val") %>% select(all_of(s)))))
cat(paste("Number of events in training set", num_event))
cat("\n")
if(num_event <100){
id_to_remove = c(id_to_remove, responsid[i])
}
}

status_to_remove = paste0("coxnet_status_f.", id_to_remove, ".0.0")
response_to_remove = paste0("coxnet_y_f.", id_to_remove, ".0.0")
phe = select(phe, -all_of(c(status_to_remove, response_to_remove)))

status=status[!(responsid %in% id_to_remove)]
responses = responses[!(responsid %in% id_to_remove)]
responsid = responsid[!(responsid %in% id_to_remove)]

K = length(responsid) # Number of responses
if(is.null(alpha)){
alpha = sqrt(K) # Here alpha is the ratio of lambda_2 and lambda_1
}

### Split the data according to the split column ---------------------------------
phe_train = as.data.table(phe %>% filter(split=='train'))
phe_val = as.data.table(phe %>% filter(split=='val'))

rm(phe)

### Initialize train and validation C-index --------------------------------------------
Ctrain = matrix(nrow=K,ncol=nlambda)
Cval = matrix(nrow=K, ncol=nlambda)


### Read genotype files, copied from snpnet --------------------------------------------------
vars <- dplyr::mutate(dplyr::rename(data.table::fread(cmd=paste0(configs[['zstdcat.path']], ' ', paste0(genotype.pfile, '.pvar.zst'))), 'CHROM'='#CHROM'),
VAR_ID=paste(ID, ALT, sep='_'))$VAR_ID
pvar <- pgenlibr::NewPvar(paste0(genotype.pfile, '.pvar.zst'))
pgen_train = pgenlibr::NewPgen(paste0(genotype.pfile, '.pgen'), pvar=pvar, sample_subset=match(phe_train$ID, psamid))
pgen_val = pgenlibr::NewPgen(paste0(genotype.pfile, '.pgen'), pvar=pvar, sample_subset=match(phe_val$ID, psamid))


pgenlibr::ClosePvar(pvar)

stats <- computeStats(genotype.pfile, paste(phe_train$ID, phe_train$ID, sep="_"), configs = configs)

### Fit an unpenalized model ------------------------------------------------------
if(length(covs) < 1){
stop("The version without covariates will be implemented later")
}
X = as.matrix(select(phe_train, all_of(covs)))
y_list = list()
status_list = list()
for(i in 1:length(responsid)){
y_list[[i]] = phe_train[[responses[i]]]
status_list[[i]] = phe_train[[status[i]]]
}

result = solve_aligned(X,y_list, status_list, c(0.0), c(0.0))

### Compute CIndex ----------------------------------
X_val = as.matrix(select(phe_val, all_of(covs)))
for(i in 1:K){
beta = result[[1]][, i]
Ctrain[i,1] = cindex::CIndex(X %*% beta, y_list[[i]], status_list[[i]])
Cval[i,1] = cindex::CIndex(X_val %*% beta, phe_val[[responses[i]]], phe_val[[status[i]]])
}

### Compute residuals and gradient-------------------------------
residuals = get_residual(X,y_list, status_list, result[[1]])
residuals = matrix(residuals,nrow = length(phe_train$ID), ncol = K, dimnames = list(paste(phe_train$ID, phe_train$ID, sep='_'),
paste0("lambda_0_k", 1:K)))

gradient = computeProduct(residuals, genotype.pfile, vars, stats, configs, iter=0)
gradient = gradient[-which(rownames(gradient) %in% stats$excludeSNP), ]

### Get the dual_norm of the gradient ---------------------------
score = get_dual_norm(gradient, alpha)

### Get lambda sequences --------------------------------------------------------
lambda_max = max(score)
lambda_min = lambda_max * lambda.min.ratio
lambda_seq = exp(seq(from = log(lambda_max), to = log(lambda_min), length.out = nlambda))
# lambda_1 is lamdba_seq, lambda_2 is lambda_seq * alpha

# The first lambda solution is already obtained
max_valid_index = 1
prev_valid_index = 0

# Use validation C-index to determine early stop
max_cindex = mean(Cval[,1])
out = list()
out[[1]] = result[[1]]
features.to.discard = NULL

iter = 1
ever.active = covs
print(ever.active)
current_B = result[[1]]
num_not_penalized = length(covs)

### Start BASIL -----------------------------------------------------------------
while(max_valid_index < nlambda){

prev_valid_index = max_valid_index
print(paste("current maximum valid index is:",max_valid_index ))
print("Current validation C-Indices are:")
print(Cval[, 1:max_valid_index])

if(length(features.to.discard) > 0){
phe_train[, (features.to.discard) := NULL]
phe_val[, (features.to.discard) := NULL]
current_B = current_B[!covs %in% features.to.discard, ]
covs = covs[!covs %in% features.to.discard]
}

which.in.model <- which(names(score) %in% covs)
score[which.in.model] <- NA
sorted.score <- sort(score, decreasing = T, na.last = NA)
features.to.add <- names(sorted.score)[1:min(200, length(sorted.score))]
covs = c(covs, features.to.add)
B_init = rbind(current_B, matrix(0.0, nrow=length(features.to.add), ncol=K))

tmp.features.add <- prepareFeatures(pgen_train, vars, features.to.add, stats)
phe_train[, colnames(tmp.features.add) := tmp.features.add]

tmp.features.add <- prepareFeatures(pgen_val, vars, features.to.add, stats)
phe_val[, colnames(tmp.features.add) := tmp.features.add]

rm(tmp.features.add)

# Not fit a regularized Cox model for the next few lambdas
lambda_seq_local = lambda_seq[(max_valid_index + 1):min(max_valid_index + num_lambda_per_iter, length(lambda_seq))]
# Need better ways to set p.fac
p.fac = rep(1, nrow(B_init))
p.fac[1:num_not_penalized] = 0.0
print(paste("Number of variables to be fitted is:",length(B_init)))

X = as.matrix(select(phe_train, all_of(covs)))
result = solve_aligned(X,y_list, status_list, lambda_seq_local, lambda_seq_local*alpha, p.fac=p.fac, B0=B_init)

residual_all = list()
for(i in 1:length(result)){
residual_all[[i]] = get_residual(X,y_list, status_list, result[[i]])
}
residual_all = do.call(cbind, residual_all)
residual_all = matrix(residual_all,nrow = length(phe_train$ID), ncol = K*num_lambda_per_iter,
dimnames = list(paste(phe_train$ID, phe_train$ID, sep='_'), paste0("lambda_0_k", 1:(K*num_lambda_per_iter))))

gradient = computeProduct(residual_all, genotype.pfile, vars, stats, configs, iter=iter)
gradient = gradient[-which(rownames(gradient) %in% stats$excludeSNP), ]

dnorm_list = list()
for(i in 1:length(result)){
start = (i-1)*K+1
end = i*K
grad_local = gradient[,start:end]
dnorm_list[[i]] = get_dual_norm(grad_local, alpha)
}


max_score = sapply(dnorm_list, function(x){max(x[!names(x) %in% covs], na.rm=NA)})
print("current lambdas are:")
print(lambda_seq_local)
print("current Maximum Scores are:")
print(max_score)
# if all failed
if(all(max_score > lambda_seq_local)){
features.to.discard = NULL
current_B = result[[1]]
score = dnorm_list[[1]]
} else {
local_valid = which.min(c(max_score <= lambda_seq_local, FALSE)) - 1 # number of valid this iteration

X_val = as.matrix(select(phe_val, all_of(covs)))
for(j in 1:local_valid){
out[[max_valid_index+j]] = result[[j]]
for(i in 1:K){
beta = result[[j]][, i]
Ctrain[i,max_valid_index+j] = cindex::CIndex(X %*% beta, y_list[[i]], status_list[[i]])
Cval[i,max_valid_index+j] = cindex::CIndex(X_val %*% beta, phe_val[[responses[i]]], phe_val[[status[i]]])
}
}
avg_Cval_this_iter = apply(Cval[,(max_valid_index + 1):(max_valid_index+local_valid), drop=F], 2, mean)
print(avg_Cval_this_iter)
max_cindex_this_iter = max(avg_Cval_this_iter)
if(max_cindex_this_iter >= max_cindex){
max_cindex = max_cindex_this_iter
} else{
print("Early stop reached")
break
}

if(which.max(avg_Cval_this_iter) != length(avg_Cval_this_iter)){
print("early stop reached")
break
}



max_valid_index = max_valid_index + local_valid
new.active = lapply(result, function(x){ which(apply(abs(x), 1, function(y){sum(y)!=0}))})
ever.active <- union(ever.active, covs[unique(unlist(new.active))])
features.to.discard = setdiff(covs, ever.active)
score = dnorm_list[[local_valid]]
current_B = result[[local_valid]]
print(paste("Number of features discarded in this iteration is", length(features.to.discard)))
print(paste("Number of ever active variables is", length(ever.active)))
}
iter = iter + 1

}
return(list(Ctrain = Ctrain, Cval = Cval, beta=out))
}
Loading

0 comments on commit bee2c67

Please sign in to comment.