This package provides an R client to the Bank of Canada’s valet API. It provide access to all of the API’s functionality except its RSS feeds. There are currently a few bugs in how it handles series groups, and some tests to develop and run.
You can install the development version of valet from GitHub with:
install.packages("devtools")
#> Installing package into '/home/corey/R/x86_64-pc-linux-gnu-library/4.1'
#> (as 'lib' is unspecified)
devtools::install_github("runkelcorey/valet")
#> Skipping install of 'valet' from a github remote, the SHA1 (ed7912d1) has not changed since last install.
#> Use `force = TRUE` to force installation
The core functions of valet
are get_series()
and get_group()
.
These retrieve observations from series and series groups, subject to
some date filters. Here’s an example of the last five Canadian dollar–US
dollar exchange-rate observations.
library(valet)
get_series("FXCADUSD", recent = 5)
#> # A tibble: 5 × 2
#> date FXCADUSD
#> <date> <dbl>
#> 1 2022-04-05 0.803
#> 2 2022-04-04 0.801
#> 3 2022-04-01 0.799
#> 4 2022-03-31 0.800
#> 5 2022-03-30 0.802
- Suppose a researcher wanted to see what datasets the Bank of Canada offered:
datasets <- get_list("groups")
This can be overwhelming, but it does allow us to filter. Let’s look for monthly Canadian Effective Exchange Rates:
subset(datasets, grepl("CEER", label))
#> # A tibble: 8 × 4
#> name label description link
#> <chr> <chr> <chr> <chr>
#> 1 CEER_DAILY CEER Daily Daily Nomi… http…
#> 2 CEER_MONTHLY_NOMINAL CEER Monthly Nominal Monthly No… http…
#> 3 CEER_MONTHLY_REAL CEER Monthly Real Monthly Re… http…
#> 4 CEER_TOTAL_WEIGHTS CEER Total Weights Canadian E… http…
#> 5 CEER_EXPORT_WEIGHTS CEER Export Weights Canadian E… http…
#> 6 CEER_IMPORT_WEIGHTS CEER Import Weights Canadian E… http…
#> 7 CEER_THIRD-MARKET_COMPETITION_WEIGHTS CEER Third-Market Com… Canadian E… http…
#> 8 CEER CEER CEER http…
We have two potential datasets, and the option to choose real or nominal data. Let’s take a look at their details before we grab what could be thousands of observations (in this case, let’s say we’re more interested in their comparisons against non-US major currencies than that they be nominal or real):[1]
get_details("CEER_MONTHLY_REAL", group = T)
#> $name
#> [1] "CEER_MONTHLY_REAL"
#>
#> $label
#> [1] "CEER Monthly Real"
#>
#> $description
#> [1] "Monthly Real Canadian Effective Exchange Rates"
#>
#> $groupSeries
#> $groupSeries$CEER_BROADM
#> $groupSeries$CEER_BROADM$label
#> [1] "Monthly Real Canadian Effective Exchange Rates"
#>
#> $groupSeries$CEER_BROADM$link
#> [1] "https://www.bankofcanada.ca/valet/series/CEER_BROADM"
#>
#>
#> $groupSeries$CEER_BROAD_XUSM
#> $groupSeries$CEER_BROAD_XUSM$label
#> [1] "Monthly Real CEER excluding the U.S. dollar"
#>
#> $groupSeries$CEER_BROAD_XUSM$link
#> [1] "https://www.bankofcanada.ca/valet/series/CEER_BROAD_XUSM"
#>
#>
#> $groupSeries$CEER_MCM
#> $groupSeries$CEER_MCM$label
#> [1] "Monthly Real CEER versus Major Currencies"
#>
#> $groupSeries$CEER_MCM$link
#> [1] "https://www.bankofcanada.ca/valet/series/CEER_MCM"
#>
#>
#> $groupSeries$CEER_OITPM
#> $groupSeries$CEER_OITPM$label
#> [1] "Monthly Real CEER versus Other Important Trading Partners"
#>
#> $groupSeries$CEER_OITPM$link
#> [1] "https://www.bankofcanada.ca/valet/series/CEER_OITPM"
get_details("CEER_MONTHLY_NOMINAL", group = T)
#> $name
#> [1] "CEER_MONTHLY_NOMINAL"
#>
#> $label
#> [1] "CEER Monthly Nominal"
#>
#> $description
#> [1] "Monthly Nominal Canadian Effective Exchange Rates"
#>
#> $groupSeries
#> $groupSeries$CEER_BROADNM
#> $groupSeries$CEER_BROADNM$label
#> [1] "Monthly Nominal Canadian Effective Exchange Rates"
#>
#> $groupSeries$CEER_BROADNM$link
#> [1] "https://www.bankofcanada.ca/valet/series/CEER_BROADNM"
#>
#>
#> $groupSeries$CEER_BROADN_XUSM
#> $groupSeries$CEER_BROADN_XUSM$label
#> [1] "Monthly Nominal CEER excluding the U.S. dollar"
#>
#> $groupSeries$CEER_BROADN_XUSM$link
#> [1] "https://www.bankofcanada.ca/valet/series/CEER_BROADN_XUSM"
#>
#>
#> $groupSeries$CEER_MCNM
#> $groupSeries$CEER_MCNM$label
#> [1] "Monthly Nominal CEER versus Major Currencies"
#>
#> $groupSeries$CEER_MCNM$link
#> [1] "https://www.bankofcanada.ca/valet/series/CEER_MCNM"
#>
#>
#> $groupSeries$CEER_OITPNM
#> $groupSeries$CEER_OITPNM$label
#> [1] "Monthly Nominal CEER versus Other Important Trading Partners"
#>
#> $groupSeries$CEER_OITPNM$link
#> [1] "https://www.bankofcanada.ca/valet/series/CEER_OITPNM"
Both datasets satisfy this condition, so we’ll grab the real data.
- Download selected data
get_group("CEER_MONTHLY_REAL")
#> # A tibble: 276 × 5
#> broadm broad_xusm mcm oitpm date
#> <dbl> <dbl> <dbl> <dbl> <date>
#> 1 96.5 94.7 96.3 97.6 1999-01-01
#> 2 98.9 98.6 98.5 101. 1999-02-01
#> 3 98.2 98.6 98.0 99.2 1999-03-01
#> 4 100. 100. 100. 99.0 1999-04-01
#> 5 102. 103. 102. 101. 1999-05-01
#> 6 102. 103. 102. 101. 1999-06-01
#> 7 101. 102. 101 99.8 1999-07-01
#> 8 99.9 100. 99.8 100 1999-08-01
#> 9 100. 99.9 100. 101. 1999-09-01
#> 10 100. 99.3 99.8 101. 1999-10-01
#> # … with 266 more rows
- You can grab a bunch of observations with a map-reduce framework, or leverage the Bank of Canada’s own, comma-separated querying feature:
get_list("series") %>%
subset(grepl("NOON", label)) %>%
.$name %>%
paste0(collapse = ",") %>%
get_series()
#> # A tibble: 2,504 × 64
#> date EUROCAE01 IEXE0101 IEXE0105 IEXE0301 IEXE0701 IEXE0901 IEXE1001
#> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2007-05-01 1.51 1.11 1.11 0.202 0.00926 0.186 0.17
#> 2 2007-05-02 1.51 1.11 1.11 0.202 0.00924 0.186 0.17
#> 3 2007-05-03 1.50 1.11 1.10 0.202 0.00920 0.185 0.16
#> 4 2007-05-04 1.50 1.11 1.10 0.202 0.00921 0.185 0.16
#> 5 2007-05-07 1.50 1.10 1.10 0.201 0.00919 0.185 0.16
#> 6 2007-05-08 1.50 1.10 1.10 0.201 0.00921 0.184 0.16
#> 7 2007-05-09 1.50 1.11 1.10 0.201 0.00924 0.184 0.16
#> 8 2007-05-10 1.50 1.11 1.10 0.201 0.00920 0.183 0.16
#> 9 2007-05-11 1.51 1.11 1.11 0.202 0.00926 0.184 0.16
#> 10 2007-05-14 1.50 1.11 1.10 0.201 0.00920 0.183 0.16
#> # … with 2,494 more rows, and 56 more variables: IEXE1101 <dbl>,
#> # IEXE1201 <dbl>, IEXE1401 <dbl>, IEXE1601 <dbl>, IEXE1901 <dbl>,
#> # IEXE2001 <dbl>, IEXE2101 <dbl>, IEXE2201 <dbl>, IEXE2301 <dbl>,
#> # IEXE2401 <dbl>, IEXE2501 <dbl>, IEXE2601 <dbl>, IEXE2702 <dbl>,
#> # IEXE2703 <dbl>, IEXE2801 <dbl>, IEXE2901 <dbl>, IEXE3001 <dbl>,
#> # IEXE3101 <dbl>, IEXE3201 <dbl>, IEXE3301 <dbl>, IEXE3401 <dbl>,
#> # IEXE3501 <dbl>, IEXE3601 <dbl>, IEXE3701 <dbl>, IEXE3801 <dbl>, …
The Bank of Canada’s API documentation explains API usage thoroughly. Their website is useful for finding series too.
[1] It’s important to note that get_details
and valet
make a
distinction between grouped observations and single series. The user
must select group = TRUE
or valet will not return a dataset.