Suppose you have cuda already installed, and cuda version is cuda-9.0
, now you can go ahead with the following steps.
# download this repo
$ git clone https://github.com/rxnataliezhang/pytorch_docker.git
$ cd pytorch_docker
# 1. install docker
$ curl -fsSL get.docker.com -o get-docker.sh
$ sudo sh get-docker.sh --mirror Aliyun
# add user to docker group if you do not want sudo every time
$ sudo usermod -aG docker runoob
$ systemctl enable docker
$ service docker start
# check if docker is installed successfully
$ docker run hello-world
# 2. install nvidia-docker and nvidia-docker-plugin
# If you have nvidia-docker 1.0 installed: we need to remove it and all existing GPU containers
$ docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
$ sudo apt-get purge -y nvidia-docker
# Add the package repositories
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
sudo apt-key add -
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
$ sudo apt-get update
# Install nvidia-docker2 and reload the Docker daemon configuration
$ sudo apt-get install -y nvidia-docker2
$ sudo pkill -SIGHUP dockerd
# Test nvidia-smi with the latest official CUDA image
$ docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi
- if you want a quick start, you can pull the image from docker hub and skip the build step
# pull from docker hub directly
$ docker pull rxzhang/pytorch:gpu
# check
$ docker image ls
- otherwise you need build your own image
- keep in mind that all user name in zshrc and Dockerfile should be replace from "rxzhang" to your desired name
$ docker build -t pytorch:gpu -f Dockerfile .
# it will take a while, please wait...
$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
pytorch gpu 70fbd709e31e 3 minutes ago 9.76GB
hello-world latest fce289e99eb9 20 minutes ago 1.84kB
- Here, I prepare a datasets folder, a checkpoints folder and a projects folder to synchronize data between local file system and docker file system.
# start a container
$ docker container run -it \
--name gpu_env \
--runtime=nvidia -u rxzhang \
--mount type=bind,source=/data/rxzhang/datasets,target=/home/rxzhang/datasets \
--mount type=bind,source=/data/rxzhang/projects,target=/home/rxzhang/projects \
--mount type=bind,source=/data/rxzhang/checkpoints,target=/home/rxzhang/checkpoints \
--shm-size=16g rxzhang/pytorch:gpu /bin/zsh