Skip to content

To collect astronomical data from both observational and modelling campaigns.

Notifications You must be signed in to change notification settings

s-balu/astrodatapy

 
 

Repository files navigation

AstroDataPy

Powered by Astropy Badge https://travis-ci.com/qyx268/astrodatapy.svg?branch=master

Python tools to collect astronomical data.

This is a python package dedicated to collect up-to-date astronomical data from both observational and modelling campaigns, with a focus on galaxy properties. Current package includes 1) statistical properties such as the number densities of galaxies (as functions of stellar mass, UV magnitude, star formation rate) and AGN (as functions of black hole mass, quasar UV/optical/bolometric luminosities); 2) correlations between galaxies properties such as the Magorrian relation, Tully Fisher relation, Disk size - stellar mass relation, and halo - stellar mass relation, etc; and 3) clustering of quasars such as the two point correlation function.

Current modelling results include DRAGONS (Meraxes).

Installation

$ pip install git+https://github.com/qyx268/astrodatapy

Usage

Example 1

read quasar two point correlation function at z = 4 with a redshift range of [3.5, 4.5]

>>> from astrodatapy.clustering import clustering
>>> obs = clustering(feature = 'QC_2PTCF', z_target = 4.0, z_tol = 0.5)
    You are requesting QC_2PTCF at z_target=4.00 with a tolerance of z_tol=0.50 and h=1.000
    quiet=True to silent
    available data of QC_2PTCF includes:
    Shen2007 Shen2009 He2018 Eftekharzadeh2015 Chehade2016 Retana-Montenegro2016

    Loading observational data from He2018...
    Filename /home/yqin/.local/lib/python3.6/site-packages/astrodatapy-0.0.dev29-py3.6.egg/astrodatapy/data//QC_2PTCF/z3pt8.dat
    ..done
>>> # show all available data of QC_2PTCF
>>> print(obs.available_observation)
    ['Shen2007' 'Shen2009' 'He2018' 'Eftekharzadeh2015' 'Chehade2016'
    'Retana-Montenegro2016']
>>> # show redshifts of all available data of QC_2PTCF
>>> print(obs.z_available_observation)
    [0.6 1.5 3.8 2.5 3.2 4.5]
>>> # show the target data of QC_2PTCF at z = 4
>>> print(obs.target_observation)
                        DataType   FileName                                               Data
    Name
    He2018  PowerLaw_2COMPONENTS  z3pt8.dat  [[0.10115794542598985, 6345.99167885821, 12459...

Example 2

read Magorrian Relation at redshift 0, output with h=0.678, and do not show information

>>> from astrodatapy.correlation import correlation
>>> obs = correlation(feature = 'Magorrian', z_target = 0, quiet = 1, h = 0.678)

Example 3

plot galaxy stellar mass function at redshift 5 and show labels

>>> import matplotlib.pyplot as plt
>>> from astrodatapy.number_density import number_density
>>> colors     = ['#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#a65628','#f781bf','#999999'] * 4
>>> markers    = ['o','s','v','^','<','>','p','*','D','.','8'] * 4
>>> linestyles = ['-','--','-.',':']
>>>
>>> z   = 5.0
>>> obs = number_density(feature = 'GSMF', z_target = 5.0, quiet = 1, h=0.678)
>>>
>>> j_data = 0
>>> k_func = 0
>>> fig, ax = plt.subplots(1, 1)
>>> for ii in range(obs.n_target_observation):
>>>     data       = obs.target_observation['Data'].iloc[ii]
>>>     label      = obs.target_observation.index[ii]
>>>     datatype   = obs.target_observation['DataType'].iloc[ii]
>>>     color      = colors[ii]
>>>     marker     = markers[j_data]
>>>     linestyle  = linestyles[k_func]
>>>     data[:,1:] = np.log10(data[:,1:])
>>>     if datatype == 'data':
>>>         ax.errorbar(data[:,0],  data[:,1], yerr = [data[:,1]-data[:,3],data[:,2]- data[:,1]],\
>>>                     label=label,color=color,fmt=marker)
>>>         j_data +=1
>>>     elif datatype == 'dataULimit':
>>>         ax.errorbar(data[:,0],  data[:,1], yerr = -0.2*data[:,1], uplims=True,\
>>>                     label=label,color=color,fmt=marker)
>>>         j_data +=1
>>>     else:
>>>         ax.plot(data[:,0],data[:,1],label=label,color=color,linestyle=linestyle,lw=3)
>>>         ax.fill_between(data[:,0], data[:,2],data[:,3],color=color,alpha=0.5)
>>>         k_func +=1
>>>
>>> ax.set_xlim(7, 13)
>>> ax.set_ylim(-7, -0.5)
>>> ax.text(0.95,0.95, "z=%.2f"%z,horizontalalignment='right',\
>>>       verticalalignment='top',transform=ax.transAxes)
>>> leg = ax.legend(loc='lower left')
>>> leg.get_frame().set_alpha(0.5)
>>> ax.set_xlabel(r"$\log_{10}[M_*/{\rm M_{\odot}}]$")
>>> ax.set_ylabel(r"$\log_{10}[\rm \phi/Mpc^{-3} dex^{-1}]$")
>>> plt.savefig('./GSMF.png',bbox_inches='tight')

docs/astrodatapy/GSMF.png

More examples can be found in this jupyter notebook.

Documentation

http://astrodatapy.readthedocs.io

Features

Number density

Features Descriptions
BHM Black Hole Mass
BHMF Black Hole Mass Function
GLF_UV Galaxy Luminosity Function -- UV
GSMF Galaxy Stellar Mass Function -- all
GSMF_Blue Galaxy Stellar Mass Function -- blue
GSMF_Bulge Galaxy Stellar Mass Function -- bulge
GSMF_Disk Galaxy Stellar Mass Function -- disk
GSMF_Quiescent Galaxy Stellar Mass Function -- quiescent
GSMF_Red Galaxy Stellar Mass Function -- red
QLF_bolometric Quasar Luminosity Function -- bolometric
QLF_optical Quasar Luminosity Function -- optical
QLF_UV Quasar Luminosity Function -- UV
SFRF Star Formation Rate Function

Correlation

Features Descriptions
BHM Black Hole Mass
Magorrian Black Hole - Galaxy Bulge Mass Scaling Relation
Tully_Fisher Mass - Velocity of Spiral Galaxies
DiskSize_StellarMass DiskSize - StellarMass
GasFraction_StellarMass GasFraction - StellarMass
sSFR_StellarMass_Blue sSFR - StellarMass -- blue
HaloMass_StellarMass HaloMass - StellarMass
HaloMass_StellarMass_Blue HaloMass - StellarMass -- blue
HaloMass_StellarMass_Red HaloMass - StellarMass -- red

Clustering

Features Descriptions
QC_2PTCF Quasar Clustering -- 2 point correlation function

License

  • Free software: BSD license
  • This project is Copyright (c) Yuxiang Qin and licensed under the terms of the BSD 3-Clause license. See the licenses folder for more information.

Contributors

  • Yuxiang Qin (The University of Melbourne)

About

To collect astronomical data from both observational and modelling campaigns.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 92.1%
  • Python 4.0%
  • TeX 2.7%
  • CAP CDS 1.2%