Skip to content

ML toolkit that integrates the best-of-breed open-source ML systems to address the Build-Train-Deploy workflow in Machine Learning

License

Notifications You must be signed in to change notification settings

sachua/kountertop

Repository files navigation

Kountertop

Kountertop is an ML toolkit that integrates the best-of-breed open-source ML systems to address the Build-Train-Deploy workflow in Machine Learning.

  • Features a centralized model building and experimentation platform
  • High performance, high availability, model versioning supported ML model serving platform
  • Abstracts complexities away from Data Scientists
  • Auto-serving capability

Overview

  1. System Architecture

  2. How to Install

System Architecture

System Architecture

How to install

We will be using MicroK8s, but you can configure it to use with any other Kubernetes provider as well!

Clone this repository to your $HOME directory

git clone https://github.com/sachua/kountertop.git

If you are installing on-prem, run the scripts to push the images to your local registry

cd on-prem
sh pull_images.sh
sh push_images.sh
  • You should then change all the image paths of the different components to point to your private registry

Enable MicroK8s add-ons

microk8s enable dns storage metrics-server metallb prometheus helm3

Installation

  1. Deploy MinIO

    helm install minio ./minio.tgz
    • Create the buckets mlflow and config

    • Copy models.config and prometheus.config in tensorflow-serving to the config bucket

  2. Deploy MLflow

    kubectl apply -f mlflow-mysql-deployment.yaml
    kubectl apply -f mlflow-ui-deployment.yaml
  3. Deploy OpenLDAP

    kubectl apply -f LDAP-server.yaml
    • Create user-accounts based on examples from LDAP users & groups

    • To seed LDAP with entries:

      kubectl exec -it -n kubeflow ldap-0 -- bash
      ldapadd -x -D "cn=admin,dc=example,dc=com" -W
      # Enter password "admin".
      # Press Ctrl+D to complete after pasting the snippets.
  4. Deploy Jupyterhub

    helm install jhub ./jupyterhub.tgz \
    --version=0.9.0 \
    --values config.yaml
    • Template for using AD instead of OpenLDAP is provided in AD-config
  5. Deploy Tensorflow Serving

    kubectl apply -f tfserving-deployment.yaml
  6. Deploy Velero

    tar -xzvf velero.tgz
    export PATH=$PATH:"/$HOME/kountertop"
    velero install \
     --provider aws \
     --plugins velero/velero-plugin-for-aws:v1.1.0 \
     --bucket velero \
     --secret-file ./credentials-velero \
     --use-volume-snapshots=false \
     --backup-location-config region=minio,s3ForcePathStyle="true",s3Url=http://minio.default.svc.cluster.local:9000
    • if minio not recognized, use the plain endpoint address instead (e.g. http://host:port)
  7. Configure Prometheus to take config from Tensorflow Serving

    • Change targets in prometheus-additional.yaml to point at the Tensorflow Serving REST endpoint

    • Create a secret out of the configuration

      kubectl create secret generic additional-scrape-configs --from-file=prometheus-additional.yaml -n monitoring -oyaml > additional-scrape-configs.yaml
    • Reference this additional configuration in your Prometheus Configuration

      kubectl edit prometheus k8s -n monitoring
          apiVersion: monitoring.coreos.com/v1
          kind: Prometheus
          metadata:
          name: prometheus
          labels:
              prometheus: prometheus
          spec:
          replicas: 1
          serviceAccountName: prometheus
          serviceMonitorSelector:
      +   additionalScrapeConfigs:
      +       name: additional-scrape-configs
      +       key: prometheus-additional.yaml
      ...

Jupyter Notebook Logging to MLflow

The default minimal notebook image is already integrated with MLflow

To use the MLflow loggin feature for custom notebooks, you can build your own jupyter image from sachua/jupyter-mlflow:latest and install your own packages

Alternatively, install MLflow in your custom notebook:

  • Add the code to a cell in your Jupyter Notebook

    %%capture
    !pip install --upgrade pip --user
    !pip install mlflow[extras] --user
    %env MLFLOW_TRACKING_URI=http://host:port
    %env MLFLOW_S3_ENDPOINT_URL=http://host:port
    %env AWS_ACCESS_KEY_ID=minio
    %env AWS_SECRET_ACCESS_KEY=minio123
    • Replace http://host:port with your MLflow endpoint and MinIO endpoint

    • Check endpoints with kubectl get svc -A

About

ML toolkit that integrates the best-of-breed open-source ML systems to address the Build-Train-Deploy workflow in Machine Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages