Zarrita is an experimental implementation of Zarr v3 including sharding. This is only a technical proof of concept meant for generating sample datasets. Not recommended for production use.
import zarrita
import numpy as np
store = zarrita.LocalStore('testoutput') # or zarrita.RemoteStore('s3://bucket/test')
testdata = np.arange(0, 16 * 16, dtype='int32').reshape((16, 16))
a = zarrita.Array.create(
store / 'array',
shape=(16, 16),
dtype='int32',
chunk_shape=(2, 8),
codecs=[
zarrita.codecs.bytes_codec(),
zarrita.codecs.blosc_codec(typesize=4),
],
attributes={'question': 'life', 'answer': 42}
)
a[:, :] = testdata
a = zarrita.Array.open(store / 'array')
assert np.array_equal(a[:, :], testdata)
a = zarrita.Array.create(
store / 'sharding',
shape=(16, 16),
dtype='int32',
chunk_shape=(16, 16),
chunk_key_encoding=('v2', '.'),
codecs=[
zarrita.codecs.sharding_codec(
chunk_shape=(8, 8),
codecs=[
zarrita.codecs.bytes_codec(),
zarrita.codecs.blosc_codec(typesize=4),
]
),
],
)
a[:, :] = testdata
assert np.array_equal(a[:, :], testdata)
g = zarrita.Group.create(store / 'group')
g2 = g.create_group('group2')
a = g2.create_array(
'array',
shape=(16, 16),
dtype='int32',
chunk_shape=(16, 16),
)
a[:, :] = testdata
g = zarrita.Group.open(store / 'group')
g2 = g['group2']
a = g['group2']['array']
assert np.array_equal(a[:, :], testdata)
a.resize((10, 10))
a.update_attributes({'question': 'life', 'answer': 0})
a = zarrita.ArrayV2.create(
store / 'array',
shape=(16, 16),
dtype='int32',
chunks=(2, 8),
)
a[:, :] = testdata
a3 = a.convert_to_v3()
assert a3.metadata.shape == a.shape
a = await zarrita.Array.create_async(
store / 'array_async',
shape=(16, 16),
dtype='int32',
chunk_shape=(2, 8),
)
await a.async_[:, :].set(testdata)
assert np.array_equal(await a.async_[:, :].get(), testdata)
This is a largely-rewritten fork of zarrita
by @alimanfoo. It implements the Zarr v3 draft specification created by @alimanfoo, @jstriebel, @jbms et al.
Licensed under MIT