Skip to content

Commit

Permalink
Merge pull request #1397 from nriviera/yolo
Browse files Browse the repository at this point in the history
[FEATURE]: adding yolov11 into face detection portfolio
  • Loading branch information
serengil authored Dec 11, 2024
2 parents e73bdb8 + 9abcbd3 commit a402f09
Show file tree
Hide file tree
Showing 12 changed files with 198 additions and 131 deletions.
5 changes: 4 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ models = [
"ArcFace",
"Dlib",
"SFace",
"GhostFaceNet",
"GhostFaceNet"
]

#face verification
Expand Down Expand Up @@ -223,6 +223,9 @@ backends = [
'retinaface',
'mediapipe',
'yolov8',
'yolov11s',
'yolov11n',
'yolov11m',
'yunet',
'centerface',
]
Expand Down
166 changes: 83 additions & 83 deletions deepface/DeepFace.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,10 +54,10 @@ def build_model(model_name: str, task: str = "facial_recognition") -> Any:
Args:
model_name (str): model identifier
- VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
ArcFace, SFace, GhostFaceNet for face recognition
ArcFace, SFace and GhostFaceNet for face recognition
- Age, Gender, Emotion, Race for facial attributes
- opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, yunet,
fastmtcnn or centerface for face detectors
- opencv, mtcnn, ssd, dlib, retinaface, mediapipe, yolov8, yolov11n,
yolov11s, yolov11m, yunet, fastmtcnn or centerface for face detectors
- Fasnet for spoofing
task (str): facial_recognition, facial_attribute, face_detector, spoofing
default is facial_recognition
Expand All @@ -68,18 +68,18 @@ def build_model(model_name: str, task: str = "facial_recognition") -> Any:


def verify(
img1_path: Union[str, np.ndarray, List[float]],
img2_path: Union[str, np.ndarray, List[float]],
model_name: str = "VGG-Face",
detector_backend: str = "opencv",
distance_metric: str = "cosine",
enforce_detection: bool = True,
align: bool = True,
expand_percentage: int = 0,
normalization: str = "base",
silent: bool = False,
threshold: Optional[float] = None,
anti_spoofing: bool = False,
img1_path: Union[str, np.ndarray, List[float]],
img2_path: Union[str, np.ndarray, List[float]],
model_name: str = "VGG-Face",
detector_backend: str = "opencv",
distance_metric: str = "cosine",
enforce_detection: bool = True,
align: bool = True,
expand_percentage: int = 0,
normalization: str = "base",
silent: bool = False,
threshold: Optional[float] = None,
anti_spoofing: bool = False,
) -> Dict[str, Any]:
"""
Verify if an image pair represents the same person or different persons.
Expand All @@ -96,8 +96,8 @@ def verify(
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'
(default is opencv).
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2' (default is cosine).
Expand Down Expand Up @@ -164,14 +164,14 @@ def verify(


def analyze(
img_path: Union[str, np.ndarray],
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
expand_percentage: int = 0,
silent: bool = False,
anti_spoofing: bool = False,
img_path: Union[str, np.ndarray],
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
expand_percentage: int = 0,
silent: bool = False,
anti_spoofing: bool = False,
) -> List[Dict[str, Any]]:
"""
Analyze facial attributes such as age, gender, emotion, and race in the provided image.
Expand All @@ -187,8 +187,8 @@ def analyze(
Set to False to avoid the exception for low-resolution images (default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'
(default is opencv).
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2' (default is cosine).
Expand Down Expand Up @@ -263,20 +263,20 @@ def analyze(


def find(
img_path: Union[str, np.ndarray],
db_path: str,
model_name: str = "VGG-Face",
distance_metric: str = "cosine",
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
expand_percentage: int = 0,
threshold: Optional[float] = None,
normalization: str = "base",
silent: bool = False,
refresh_database: bool = True,
anti_spoofing: bool = False,
batched: bool = False,
img_path: Union[str, np.ndarray],
db_path: str,
model_name: str = "VGG-Face",
distance_metric: str = "cosine",
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
expand_percentage: int = 0,
threshold: Optional[float] = None,
normalization: str = "base",
silent: bool = False,
refresh_database: bool = True,
anti_spoofing: bool = False,
batched: bool = False,
) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]:
"""
Identify individuals in a database
Expand All @@ -298,8 +298,8 @@ def find(
Set to False to avoid the exception for low-resolution images (default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'
(default is opencv).
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
align (boolean): Perform alignment based on the eye positions (default is True).
Expand Down Expand Up @@ -369,15 +369,15 @@ def find(


def represent(
img_path: Union[str, np.ndarray],
model_name: str = "VGG-Face",
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
expand_percentage: int = 0,
normalization: str = "base",
anti_spoofing: bool = False,
max_faces: Optional[int] = None,
img_path: Union[str, np.ndarray],
model_name: str = "VGG-Face",
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
expand_percentage: int = 0,
normalization: str = "base",
anti_spoofing: bool = False,
max_faces: Optional[int] = None,
) -> List[Dict[str, Any]]:
"""
Represent facial images as multi-dimensional vector embeddings.
Expand All @@ -396,8 +396,8 @@ def represent(
(default is True).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'
(default is opencv).
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
align (boolean): Perform alignment based on the eye positions (default is True).
Expand Down Expand Up @@ -441,15 +441,15 @@ def represent(


def stream(
db_path: str = "",
model_name: str = "VGG-Face",
detector_backend: str = "opencv",
distance_metric: str = "cosine",
enable_face_analysis: bool = True,
source: Any = 0,
time_threshold: int = 5,
frame_threshold: int = 5,
anti_spoofing: bool = False,
db_path: str = "",
model_name: str = "VGG-Face",
detector_backend: str = "opencv",
distance_metric: str = "cosine",
enable_face_analysis: bool = True,
source: Any = 0,
time_threshold: int = 5,
frame_threshold: int = 5,
anti_spoofing: bool = False,
) -> None:
"""
Run real time face recognition and facial attribute analysis
Expand All @@ -462,8 +462,8 @@ def stream(
OpenFace, DeepFace, DeepID, Dlib, ArcFace, SFace and GhostFaceNet (default is VGG-Face).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'
(default is opencv).
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
distance_metric (string): Metric for measuring similarity. Options: 'cosine',
'euclidean', 'euclidean_l2' (default is cosine).
Expand Down Expand Up @@ -499,15 +499,15 @@ def stream(


def extract_faces(
img_path: Union[str, np.ndarray],
detector_backend: str = "opencv",
enforce_detection: bool = True,
align: bool = True,
expand_percentage: int = 0,
grayscale: bool = False,
color_face: str = "rgb",
normalize_face: bool = True,
anti_spoofing: bool = False,
img_path: Union[str, np.ndarray],
detector_backend: str = "opencv",
enforce_detection: bool = True,
align: bool = True,
expand_percentage: int = 0,
grayscale: bool = False,
color_face: str = "rgb",
normalize_face: bool = True,
anti_spoofing: bool = False,
) -> List[Dict[str, Any]]:
"""
Extract faces from a given image
Expand All @@ -517,8 +517,8 @@ def extract_faces(
as a string, numpy array (BGR), or base64 encoded images.
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'
(default is opencv).
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Set to False to avoid the exception for low-resolution images (default is True).
Expand Down Expand Up @@ -584,11 +584,11 @@ def cli() -> None:


def detectFace(
img_path: Union[str, np.ndarray],
target_size: tuple = (224, 224),
detector_backend: str = "opencv",
enforce_detection: bool = True,
align: bool = True,
img_path: Union[str, np.ndarray],
target_size: tuple = (224, 224),
detector_backend: str = "opencv",
enforce_detection: bool = True,
align: bool = True,
) -> Union[np.ndarray, None]:
"""
Deprecated face detection function. Use extract_faces for same functionality.
Expand All @@ -601,8 +601,8 @@ def detectFace(
added to resize the image (default is (224, 224)).
detector_backend (string): face detector backend. Options: 'opencv', 'retinaface',
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'centerface' or 'skip'
(default is opencv).
'mtcnn', 'ssd', 'dlib', 'mediapipe', 'yolov8', 'yolov11n', 'yolov11s', 'yolov11m',
'centerface' or 'skip' (default is opencv).
enforce_detection (boolean): If no face is detected in an image, raise an exception.
Set to False to avoid the exception for low-resolution images (default is True).
Expand Down
21 changes: 17 additions & 4 deletions deepface/commons/weight_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,8 +128,9 @@ def download_all_models_in_one_shot() -> None:
WEIGHTS_URL as SSD_WEIGHTS,
)
from deepface.models.face_detection.Yolo import (
WEIGHT_URL as YOLOV8_WEIGHTS,
WEIGHT_NAME as YOLOV8_WEIGHT_NAME,
WEIGHT_URLS as YOLO_WEIGHTS,
WEIGHT_NAMES as YOLO_WEIGHT_NAMES,
YoloModel
)
from deepface.models.face_detection.YuNet import WEIGHTS_URL as YUNET_WEIGHTS
from deepface.models.face_detection.Dlib import WEIGHTS_URL as DLIB_FD_WEIGHTS
Expand Down Expand Up @@ -162,8 +163,20 @@ def download_all_models_in_one_shot() -> None:
SSD_MODEL,
SSD_WEIGHTS,
{
"filename": YOLOV8_WEIGHT_NAME,
"url": YOLOV8_WEIGHTS,
"filename": YOLO_WEIGHT_NAMES[YoloModel.V8N.value],
"url": YOLO_WEIGHTS[YoloModel.V8N.value],
},
{
"filename": YOLO_WEIGHT_NAMES[YoloModel.V11N.value],
"url": YOLO_WEIGHTS[YoloModel.V11N.value],
},
{
"filename": YOLO_WEIGHT_NAMES[YoloModel.V11S.value],
"url": YOLO_WEIGHTS[YoloModel.V11S.value],
},
{
"filename": YOLO_WEIGHT_NAMES[YoloModel.V11M.value],
"url": YOLO_WEIGHTS[YoloModel.V11M.value],
},
YUNET_WEIGHTS,
DLIB_FD_WEIGHTS,
Expand Down
Loading

0 comments on commit a402f09

Please sign in to comment.