Skip to content

Computer vision and deep learning on tennis video

License

Notifications You must be signed in to change notification settings

sethah/deeptennis

Repository files navigation

Deeptennis

A project which applies various machine learning, deep learning, and computer vision techniques to videos of professional tennis matches.

Built with AllenCV.

alt text alt text
alt text alt text

Installation

In a virtual environment:

pip install -r requirements.txt

Quick Demo

Start a simple demo server using a pre-trained model.

python -m allencv.service.server_simple \
--archive-path "https://deeptennis.s3-us-west-1.amazonaws.com/player_kprcnn_res50_fpn.tar.gz" \
--predictor default_image \
--include-package allencv.data.dataset_readers \
--include-package allencv.modules.im2vec_encoders \
--include-package allencv.modules.im2im_encoders \
--include-package allencv.models \
--include-package allencv.predictors \
--title "Player detector" \
--detection \
--overrides '{"dataset_reader": {"type": "image_annotation", "augmentation": [{"type": "resize", "height": 512, "width": 512}, {"type": "normalize"}], "lazy": true}, "model": {"roi_box_head": {"decoder_detections_per_image": 50}, "rpn": {"archive_file": "https://deeptennis.s3-us-west-1.amazonaws.com/player_rpn_res50_fpn.tar.gz"}}}'

Navigate to localhost:8000 and select an image of a tennis point to view the model's detections.

Generate an annotated video with predictions

# change to the project root directory
cd path/to/deeptennis
make data
# download a short highlight video for making predictions
curl -o data/raw/federer_cilic_aus_18.mp4 https://deeptennis.s3-us-west-1.amazonaws.com/federer_cilic_aus_18.mp4
# VFRAMES=100 limits the output video to 100 frames
make data/interim/tracking_videos/federer_cilic_aus_18 FPS=1 VFRAMES=100 MODEL_PATH=https://deeptennis.s3-us-west-1.amazonaws.com/player_kprcnn_res50_fpn.tar.gz
# output is in data/interim/tracking_videos/federer_cilic_aus_18/federer_cilic_aus_18.mp4

Releases

No releases published

Packages

No packages published