-
Notifications
You must be signed in to change notification settings - Fork 0
/
ChangeLog
174 lines (140 loc) · 4.99 KB
/
ChangeLog
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
CHANGES
=======
1.5.0
-----
* ci: install setuptools, wheel
* ci: update cibuildwheel to non-buggy version
* ci: update tests, -3.7, +3.11, +3.12
* feat: add min pooling
1.4.1
-----
* build: more update for py312
* build: update for py312
1.4.0
-----
* release(1.4.0): full support for 2x2x1 avg pooling
* perf: 2x2x1 sparse avg pooling (#20)
* feat: numpy implementation of sparse for averaging
1.3.3
-----
* release(1.3.3): fix sparse mode 2x2x2 seg ds and throw error
* fix: throw error if sparse mode isn't supported
* refactor: remove unused variable oyoff
* fix: incorrect sparse check value in 2x2x2 mode downsampling
1.3.2
-----
* release(1.3.2): updates build system for py311
* build: update for python311
1.3.1
-----
* release(1.3.1): fixes downsampling factors > 2
* ci: remove appveyor
* ci: remove travis
* ci: add GHA tests
* fix: supporting floats in is\_pot (#19)
1.3.0
-----
* release(1.3.0): performance improvements for mode pooling
* install: bump requirement to py37
* perf: faster 2x2 mode pooling (#18)
* perf: enabled forgotten accelerated 2x2x2 sparse mode
1.2.4
-----
* chore: update supported versions
* release(1.2.4): increase performance of mode pooling 2x2x1
* chore: update ChangeLog
* build: update tox
* chore: replace hyphens with underscores
* docs: elaborate on why 2x2x2 is so much faster on real data
* docs: update perf numbers with fix + use connectomics.npy for seg
* perf: increase performance of mode pooling 2x2
1.2.3
-----
* release(1.2.3): fix ds segmentation crash and perf for additional dtypes
* docs: clarify mean of 10 runs
* docs: add benchmark data to README
* perf: accelerate 2x2 and 2x2x2 downsampling for num\_mips=1 for all types
* docs: add results of a perf run
* fix: loss of fourth index during recursive mode pooling
* feat(perf.py): add benchmark script
1.2.2
-----
* build: make sure sse3 is specified on x86\_64 platforms
* fix: make tinybrain build on more platforms
* build: skip py36 in CI build wheel
* release(1.2.2): fixes off-by-one error in minimum average pooling size
* build: add GHA
* fix: off-by-one error in minimum size inequality (#17)
* chore: add windows py39 to appveyor
* chore: make sure BigSur can run build script
1.2.1
-----
* release(1.2.1): accomodate numpy deprecations
* fix: numpy deprecated np.int in favor of int
* chore: updated build system
1.2.0
-----
* chore: drop py27, py35
* refactor(arm64): provide non-intrinsics for non x86 code
* perf: reduce memory usage for single mip for 2x2 averaging (#12)
* perf(avg2x2x2): faster and lower memory for single mips
* chore: drop py27 and py35
* fix: remove dependency on six
* perf: reduce memory usage for single mip for 2x2 averaging
* chore: update trove identifiers
1.1.0
-----
* release(1.1.0): sparse modes for 2x2x2 downsampling
* feat: 2x2x2 sparse average pooling for uint8, uint16 (#10)
* feat+perf: 2x2x2 mode downsample sparse mode (#9)
* docs: describe new 2x2x2 downsamples
* docs: mention that 2x2x2 downsamples are fast now
1.0.0
-----
* chore: add instrumentation for creating binaries
* perf: accelerated 2x2x2 segmentation downsample (#8)
* feat: fast 2x2x2 support for downsample\_with\_averaging (#7)
* chore: add python3.8 to tinybrain docker build
* docs: fix spelling error
* install: add stdlib and min os version for compiling on mac
0.1.1
-----
* release(0.1.1): manual SIMD on floating point 2x2x1 averaging
* perf: manual SIMD for floating point operations (#2)
* chore: update setup.py to comply with new PyPI rules
* fix: incorrect cast in render\_image
* docs: clarify that countless works best on AVX2
* docs: discuss what downsample\_segmentation actually does
* chore: add GPL v3+ classifier to setup.cfg
0.1.0
-----
* chore: bump version to 0.1.0
* fix: compiler integer comparison warning
* docs: updated performance measures for averaging
* perf: enhancements to uint16, float32, and float64 downsample\_with\_averaging
* perf: ~25% faster downsample with averaging
* docs: add link to article on sparse downsampling
* docs: make sure PyPI License is GPL v3+ (currently None)
* fix: downsample\_with\_striding should support num\_mips
* docs: add installation instructions
0.0.1
-----
* chore: add \_\_version\_\_ = 0.0.1
* docs: add Travis testing badge
* test: add travis CI integration
* test: compare accelerated mode pooling and countless mode pooling
* test: add simple test to compare averaging implementations
* fix: if to elif
* fix: accelerated mode pooling was preempting stippled
* fix: slight discrepency between numpy countless2d and the Cython version
* test: adding automated testing (and solving issues!)
* docs: snarky comment
* docs: developmental PyPI release
* fix: slow path in downsample\_with\_averaging
* feat: workable downsample\_with\_averaging function
* feat: added float, double, uint16 support for accelerated avg pooling
* refactor: made c++ accumulation code more data type flexible
* feat: added 4d support for accelerated 2x2 avg pooling
* refactor: remove unused variables
* feat: accelerated 2x2x1 downsample with averaging working
* Initial commit