This project explores the application of Belief Propagation (BP) for decoding sparse quantum Low-Density Parity-Check (LDPC) codes. It evaluates BP's scalability, accuracy, and computational efficiency, incorporating heuristic techniques such as freezing and random perturbations to improve decoding performance.
.
├── src/ # Source code for LDPC decoding
│ ├── belief_propagation_decoder.py # Implementation of Belief Propagation decoding and heuristics
├── tests/ # Test suite
│ └── test_belief_propagation_decoder.py # Unit tests for BP decoding
├── docs/ # Relevant documents and final report
├── results/ # Directory for plots and metrics
├── README.md # Project documentation
├── requirements.txt # Python dependencies
- Implementation of Belief Propagation for quantum LDPC codes using the
pyldpc
library. - Heuristic enhancements to improve decoding robustness:
- Freezing: Fixes high-confidence variable nodes.
- Random Perturbations: Introduces stochastic variations in prior probabilities.
- Comprehensive metrics evaluation:
- Block Error Rate (BER)
- Decoding Success Rate
- Latency
- GPU-accelerated parallel message passing for scalability.
This project is built using Python. The dependencies can be installed with:
pip install -r requirements.txt
Dependencies include:
numpy
matplotlib
pyldpc
pytest
scipy
networkx
The main script evaluates BP decoding with heuristics for sparse quantum LDPC codes:
python src/belief_propagation_decoder.py
The test suite validates the implementation of BP decoding and its heuristic enhancements. Run the tests using:
pytest tests/
Example output:
=============================================================== test session starts ================================================================
platform darwin -- Python 3.12.6, pytest-8.3.4, pluggy-1.5.0
rootdir: /Users/shiprasingh/quantum_architecture/sparse_quantum_decoding
collected 4 items
tests/test_belief_propagation_decoder.py .... [100%]
================================================================ 4 passed in 1.04s =================================================================
The results are stored in the results/
directory and include:
- Plots comparing decoding latency, block error rate, and success rate for standard and heuristic BP.
- Metrics evaluated across a range of signal-to-noise ratios (SNR).
- Dr. Ramin Ayanzadeh for guidance and encouragement to explore quantum error correction.
- The
pyldpc
library developers for their well-documented and robust tools.