Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support for grazing-incidence exit angles and polar angle #2380

Merged
merged 24 commits into from
Jan 30, 2025
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
correction exit and scattering angles
Edgar committed Jan 17, 2025
commit 745e50cb167be93313a2417f6d809d63a1de1a42
62 changes: 46 additions & 16 deletions src/pyFAI/units.py
Original file line number Diff line number Diff line change
@@ -349,7 +349,7 @@ def eq_q(x, y, z, wavelength):
return 4.0e-9 * numpy.pi * numpy.sin(eq_2th(x, y, z) / 2.0) / wavelength


def eq_exitangle(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, sample_orientation=1):
def eq_scattering_angle_vertical(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, sample_orientation=1):
"""Calculates the vertical exit scattering angle (relative to direct beam axis), used for GI/Fiber diffraction

:param x: horizontal position, towards the center of the ring, from sample position
@@ -361,7 +361,29 @@ def eq_exitangle(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, s
return numpy.arctan2(y, numpy.sqrt(z ** 2 + x ** 2))


def eq_exitangle_horz(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, sample_orientation=1):
def eq_exit_angle(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, sample_orientation=1):
"""Calculates the vertical exit scattering angle (relative to direct beam axis), used for GI/Fiber diffraction

:param x: horizontal position, towards the center of the ring, from sample position
:param y: vertical position, to the roof, from sample position
:param z: distance from sample along the beam
:param wavelength: in meter
:return: vertical exit angle in radians
"""
rot_incident_angle = numpy.array([[1,0,0],
[0,numpy.cos(incident_angle), numpy.sin(-incident_angle)],
[0, numpy.sin(incident_angle), numpy.cos(incident_angle)]],
)
rot_tilt_angle = numpy.array([[numpy.cos(tilt_angle), numpy.sin(-tilt_angle), 0],
[numpy.sin(tilt_angle), numpy.cos(tilt_angle), 0],
[0, 0, 1]],
)
rotated_xyz = numpy.tensordot(rot_incident_angle, numpy.stack((x,y,z)), axes=1)
xp, yp, zp = numpy.tensordot(rot_tilt_angle, rotated_xyz, axes=1)
return numpy.arctan2(yp, numpy.sqrt(zp ** 2 + xp ** 2))


def eq_scattering_angle_horz(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, sample_orientation=1):
"""Calculates the horizontal exit scattering angle (relative to direct beam axis), used for GI/Fiber diffraction

:param x: horizontal position, towards the center of the ring, from sample position
@@ -382,9 +404,9 @@ def q_lab_horz(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, sam
:param wavelength: in meter
:return: horizontal scattering vector in inverse nm
"""
exit_angle = eq_exitangle(x=x, y=y, z=z, wavelength=wavelength)
exit_angle_horz = eq_exitangle_horz(x=x, y=y, z=z, wavelength=wavelength)
return 2.0e-9 / wavelength * numpy.pi * numpy.cos(exit_angle) * numpy.sin(exit_angle_horz)
scattering_angle_vertical = eq_scattering_angle_vertical(x=x, y=y, z=z, wavelength=wavelength)
scattering_angle_horz = eq_scattering_angle_horz(x=x, y=y, z=z, wavelength=wavelength)
return 2.0e-9 / wavelength * numpy.pi * numpy.cos(scattering_angle_vertical) * numpy.sin(scattering_angle_horz)


def q_lab_vert(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, sample_orientation=1):
@@ -396,7 +418,7 @@ def q_lab_vert(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, sam
:param wavelength: in meter
:return: vertical scattering vector in inverse nm
"""
exit_angle = eq_exitangle(x=x, y=y, z=z, wavelength=wavelength)
exit_angle = eq_scattering_angle_vertical(x=x, y=y, z=z, wavelength=wavelength)
return 2.0e-9 / wavelength * numpy.pi * numpy.sin(exit_angle)


@@ -409,8 +431,8 @@ def q_lab_beam(x, y, z, wavelength=None, incident_angle=0.0, tilt_angle=0.0, sam
:param wavelength: in meter
:return: beam scattering vector in inverse nm
"""
exit_angle = eq_exitangle(x=x, y=y, z=z, wavelength=wavelength)
exit_angle_horz = eq_exitangle_horz(x=x, y=y, z=z, wavelength=wavelength)
exit_angle = eq_scattering_angle_vertical(x=x, y=y, z=z, wavelength=wavelength)
exit_angle_horz = eq_scattering_angle_horz(x=x, y=y, z=z, wavelength=wavelength)
return 2.0e-9 / wavelength * numpy.pi * (numpy.cos(exit_angle) * numpy.cos(exit_angle_horz) - 1)


@@ -877,19 +899,27 @@ def eq_q_total(x, y, z, wavelength, incident_angle=0.0, tilt_angle=0.0, sample_o
unit_symbol="nm^{-1}",
positive=False)

register_radial_fiber_unit("exitangle_rad",
register_radial_fiber_unit("scattering_angle_vert",
scale=1.0,
label=r"Exit scattering angle (rad)",
equation=eq_exitangle,
short_name="exitangle",
label=r"Vertical scattering angle (rad)",
equation=eq_scattering_angle_vertical,
short_name="scatangle_vert",
unit_symbol="rad",
positive=False)

register_radial_fiber_unit("scattering_angle_horz",
scale=1.0,
label=r"Horizontal scattering angle(rad)",
equation=eq_scattering_angle_horz,
short_name="scatangle_horz",
unit_symbol="rad",
positive=False)

register_radial_fiber_unit("horz_exitangle_rad",
register_radial_fiber_unit("exit_angle",
scale=1.0,
label=r"Exit scattering angle (rad) in the horizontal axis",
equation=eq_exitangle_horz,
short_name="exitangle_horz",
label=r"Exit angle(rad)",
equation=eq_exit_angle,
short_name="exitangle",
unit_symbol="rad",
positive=False)