Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix documentation due to missing python modules #91

Merged
merged 3 commits into from
Sep 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,4 @@ sphinx-book-theme
sphinx-copybutton
myst-nb
cobaya
sacc
2 changes: 1 addition & 1 deletion docs/source/mflike.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
``MFLike`` class content
------------------------

.. autoclass:: mflike.MFLike
.. autoclass:: mflike.mflike._MFLike
:exclude-members: initialize
:members:
:private-members:
Expand Down
185 changes: 175 additions & 10 deletions docs/source/notebooks/tutorial_fisher.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -438,16 +438,181 @@
},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'latex2mathml'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[14], line 8\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# LaTeX expressions do not render properly with pydata-sphinx-theme.\u001b[39;00m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;66;03m# It's long standing issue https://github.com/executablebooks/jupyter-book/issues/1826\u001b[39;00m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;66;03m# with no real solution except hacky's one. Here we convert LaTeX name of parameters to MathML\u001b[39;00m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# equivalent and display the pandas dataframe with the styler class of pandas to render HTML code\u001b[39;00m\n\u001b[0;32m 5\u001b[0m \u001b[38;5;66;03m# You need to pip install latex2mathml or change index to latex_names variable\u001b[39;00m\n\u001b[0;32m 6\u001b[0m \u001b[38;5;66;03m# if you do not plan to generate documentation.\u001b[39;00m\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m\n\u001b[1;32m----> 8\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mlatex2mathml\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mconverter\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m convert\n\u001b[0;32m 10\u001b[0m (\n\u001b[0;32m 11\u001b[0m pd\u001b[38;5;241m.\u001b[39mDataFrame(\n\u001b[0;32m 12\u001b[0m [\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 20\u001b[0m \u001b[38;5;241m.\u001b[39mstyle\u001b[38;5;241m.\u001b[39mformat(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{:e}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, subset\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mvalue\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mσ\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[0;32m 21\u001b[0m )\n",
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'latex2mathml'"
]
}
"data": {
"text/html": [
"<style type=\"text/css\">\n",
"</style>\n",
"<table id=\"T_8eda3\">\n",
" <thead>\n",
" <tr>\n",
" <th class=\"blank level0\" >&nbsp;</th>\n",
" <th id=\"T_8eda3_level0_col0\" class=\"col_heading level0 col0\" >value</th>\n",
" <th id=\"T_8eda3_level0_col1\" class=\"col_heading level0 col1\" >σ</th>\n",
" <th id=\"T_8eda3_level0_col2\" class=\"col_heading level0 col2\" >Fisher S/N</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row0\" class=\"row_heading level0 row0\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003B8;</mi><mrow><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">C</mi></mrow></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row0_col0\" class=\"data row0 col0\" >1.040920e-02</td>\n",
" <td id=\"T_8eda3_row0_col1\" class=\"data row0 col1\" >1.405784e-06</td>\n",
" <td id=\"T_8eda3_row0_col2\" class=\"data row0 col2\" >7404.553659</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row1\" class=\"row_heading level0 row1\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003A9;</mi><mi>&#x00062;</mi></msub><msup><mi>h</mi><mn>2</mn></msup></mrow></math></th>\n",
" <td id=\"T_8eda3_row1_col0\" class=\"data row1 col0\" >2.237000e-02</td>\n",
" <td id=\"T_8eda3_row1_col1\" class=\"data row1 col1\" >6.408286e-05</td>\n",
" <td id=\"T_8eda3_row1_col2\" class=\"data row1 col2\" >349.079325</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row2\" class=\"row_heading level0 row2\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>n</mi><mi>&#x00073;</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row2_col0\" class=\"data row2 col0\" >9.649000e-01</td>\n",
" <td id=\"T_8eda3_row2_col1\" class=\"data row2 col1\" >3.217733e-03</td>\n",
" <td id=\"T_8eda3_row2_col2\" class=\"data row2 col2\" >299.869514</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row3\" class=\"row_heading level0 row3\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003B2;</mi><mi>p</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row3_col0\" class=\"data row3 col0\" >2.200000e+00</td>\n",
" <td id=\"T_8eda3_row3_col1\" class=\"data row3 col1\" >1.226949e-02</td>\n",
" <td id=\"T_8eda3_row3_col2\" class=\"data row3 col2\" >179.306622</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row4\" class=\"row_heading level0 row4\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003B2;</mi><mi>s</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row4_col0\" class=\"data row4 col0\" >-2.500000e+00</td>\n",
" <td id=\"T_8eda3_row4_col1\" class=\"data row4 col1\" >1.653964e-02</td>\n",
" <td id=\"T_8eda3_row4_col2\" class=\"data row4 col2\" >151.151996</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row5\" class=\"row_heading level0 row5\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003A9;</mi><mi>&#x00063;</mi></msub><msup><mi>h</mi><mn>2</mn></msup></mrow></math></th>\n",
" <td id=\"T_8eda3_row5_col0\" class=\"data row5 col0\" >1.200000e-01</td>\n",
" <td id=\"T_8eda3_row5_col1\" class=\"data row5 col1\" >1.104581e-03</td>\n",
" <td id=\"T_8eda3_row5_col2\" class=\"data row5 col2\" >108.638462</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row6\" class=\"row_heading level0 row6\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003B1;</mi><mi>s</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row6_col0\" class=\"data row6 col0\" >1.000000e+00</td>\n",
" <td id=\"T_8eda3_row6_col1\" class=\"data row6 col1\" >9.758260e-03</td>\n",
" <td id=\"T_8eda3_row6_col2\" class=\"data row6 col2\" >102.477290</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row7\" class=\"row_heading level0 row7\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003B1;</mi><mi>p</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row7_col0\" class=\"data row7 col0\" >1.000000e+00</td>\n",
" <td id=\"T_8eda3_row7_col1\" class=\"data row7 col1\" >1.849340e-02</td>\n",
" <td id=\"T_8eda3_row7_col2\" class=\"data row7 col2\" >54.073333</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row8\" class=\"row_heading level0 row8\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>A</mi><mi>&#x00073;</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row8_col0\" class=\"data row8 col0\" >2.098903e-09</td>\n",
" <td id=\"T_8eda3_row8_col1\" class=\"data row8 col1\" >3.968838e-11</td>\n",
" <td id=\"T_8eda3_row8_col2\" class=\"data row8 col2\" >52.884576</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row9\" class=\"row_heading level0 row9\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003B2;</mi><mi>c</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row9_col0\" class=\"data row9 col0\" >2.200000e+00</td>\n",
" <td id=\"T_8eda3_row9_col1\" class=\"data row9 col1\" >4.474972e-02</td>\n",
" <td id=\"T_8eda3_row9_col2\" class=\"data row9 col2\" >49.162314</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row10\" class=\"row_heading level0 row10\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>a</mi><mi>s</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row10_col0\" class=\"data row10 col0\" >3.100000e+00</td>\n",
" <td id=\"T_8eda3_row10_col1\" class=\"data row10 col1\" >8.962352e-02</td>\n",
" <td id=\"T_8eda3_row10_col2\" class=\"data row10 col2\" >34.589136</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row11\" class=\"row_heading level0 row11\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003B2;</mi><mrow><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">u</mi><mi mathvariant=\"normal\">s</mi><mi mathvariant=\"normal\">t</mi></mrow></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row11_col0\" class=\"data row11 col0\" >1.500000e+00</td>\n",
" <td id=\"T_8eda3_row11_col1\" class=\"data row11 col1\" >6.570298e-02</td>\n",
" <td id=\"T_8eda3_row11_col2\" class=\"data row11 col2\" >22.830015</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row12\" class=\"row_heading level0 row12\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>a</mi><mrow><mi mathvariant=\"normal\">t</mi><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">Z</mi></mrow></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row12_col0\" class=\"data row12 col0\" >3.300000e+00</td>\n",
" <td id=\"T_8eda3_row12_col1\" class=\"data row12 col1\" >1.515281e-01</td>\n",
" <td id=\"T_8eda3_row12_col2\" class=\"data row12 col2\" >21.778140</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row13\" class=\"row_heading level0 row13\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msubsup><mi>a</mi><mrow><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">u</mi><mi mathvariant=\"normal\">s</mi><mi mathvariant=\"normal\">t</mi></mrow><mrow><mi mathvariant=\"normal\">E</mi><mi mathvariant=\"normal\">E</mi></mrow></msubsup></mrow></math></th>\n",
" <td id=\"T_8eda3_row13_col0\" class=\"data row13 col0\" >1.000000e-01</td>\n",
" <td id=\"T_8eda3_row13_col1\" class=\"data row13 col1\" >6.499191e-03</td>\n",
" <td id=\"T_8eda3_row13_col2\" class=\"data row13 col2\" >15.386530</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row14\" class=\"row_heading level0 row14\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>a</mi><mi>p</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row14_col0\" class=\"data row14 col0\" >6.900000e+00</td>\n",
" <td id=\"T_8eda3_row14_col1\" class=\"data row14 col1\" >4.769117e-01</td>\n",
" <td id=\"T_8eda3_row14_col2\" class=\"data row14 col2\" >14.468087</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row15\" class=\"row_heading level0 row15\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003B1;</mi><mrow><mrow><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">u</mi><mi mathvariant=\"normal\">s</mi><mi mathvariant=\"normal\">t</mi></mrow><mo>&#x0002C;</mo><mi>E</mi></mrow></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row15_col0\" class=\"data row15 col0\" >-4.000000e-01</td>\n",
" <td id=\"T_8eda3_row15_col1\" class=\"data row15 col1\" >2.818837e-02</td>\n",
" <td id=\"T_8eda3_row15_col2\" class=\"data row15 col2\" >14.190251</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row16\" class=\"row_heading level0 row16\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msubsup><mi>a</mi><mrow><mi mathvariant=\"normal\">p</mi><mi mathvariant=\"normal\">s</mi></mrow><mrow><mi mathvariant=\"normal\">T</mi><mi mathvariant=\"normal\">E</mi></mrow></msubsup></mrow></math></th>\n",
" <td id=\"T_8eda3_row16_col0\" class=\"data row16 col0\" >4.200000e-02</td>\n",
" <td id=\"T_8eda3_row16_col1\" class=\"data row16 col1\" >3.558257e-03</td>\n",
" <td id=\"T_8eda3_row16_col2\" class=\"data row16 col2\" >11.803533</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row17\" class=\"row_heading level0 row17\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>&#x003BE;</mi></mrow></math></th>\n",
" <td id=\"T_8eda3_row17_col0\" class=\"data row17 col0\" >1.000000e-01</td>\n",
" <td id=\"T_8eda3_row17_col1\" class=\"data row17 col1\" >1.499541e-02</td>\n",
" <td id=\"T_8eda3_row17_col2\" class=\"data row17 col2\" >6.668706</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row18\" class=\"row_heading level0 row18\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msubsup><mi>a</mi><mrow><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">u</mi><mi mathvariant=\"normal\">s</mi><mi mathvariant=\"normal\">t</mi></mrow><mrow><mi mathvariant=\"normal\">T</mi><mi mathvariant=\"normal\">E</mi></mrow></msubsup></mrow></math></th>\n",
" <td id=\"T_8eda3_row18_col0\" class=\"data row18 col0\" >1.000000e-01</td>\n",
" <td id=\"T_8eda3_row18_col1\" class=\"data row18 col1\" >1.589361e-02</td>\n",
" <td id=\"T_8eda3_row18_col2\" class=\"data row18 col2\" >6.291835</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row19\" class=\"row_heading level0 row19\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>a</mi><mrow><mi mathvariant=\"normal\">k</mi><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">Z</mi></mrow></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row19_col0\" class=\"data row19 col0\" >1.600000e+00</td>\n",
" <td id=\"T_8eda3_row19_col1\" class=\"data row19 col1\" >2.589273e-01</td>\n",
" <td id=\"T_8eda3_row19_col2\" class=\"data row19 col2\" >6.179340</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row20\" class=\"row_heading level0 row20\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>a</mi><mi>c</mi></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row20_col0\" class=\"data row20 col0\" >4.900000e+00</td>\n",
" <td id=\"T_8eda3_row20_col1\" class=\"data row20 col1\" >8.875297e-01</td>\n",
" <td id=\"T_8eda3_row20_col2\" class=\"data row20 col2\" >5.520942</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row21\" class=\"row_heading level0 row21\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msubsup><mi>a</mi><mrow><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">u</mi><mi mathvariant=\"normal\">s</mi><mi mathvariant=\"normal\">t</mi></mrow><mrow><mi mathvariant=\"normal\">T</mi><mi mathvariant=\"normal\">T</mi></mrow></msubsup></mrow></math></th>\n",
" <td id=\"T_8eda3_row21_col0\" class=\"data row21 col0\" >2.800000e+00</td>\n",
" <td id=\"T_8eda3_row21_col1\" class=\"data row21 col1\" >5.458397e-01</td>\n",
" <td id=\"T_8eda3_row21_col2\" class=\"data row21 col2\" >5.129711</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row22\" class=\"row_heading level0 row22\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003C4;</mi><mrow><mi mathvariant=\"normal\">r</mi><mi mathvariant=\"normal\">e</mi><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">o</mi></mrow></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row22_col0\" class=\"data row22 col0\" >5.440000e-02</td>\n",
" <td id=\"T_8eda3_row22_col1\" class=\"data row22 col1\" >1.063018e-02</td>\n",
" <td id=\"T_8eda3_row22_col2\" class=\"data row22 col2\" >5.117505</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row23\" class=\"row_heading level0 row23\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msub><mi>&#x003B1;</mi><mrow><mrow><mi mathvariant=\"normal\">d</mi><mi mathvariant=\"normal\">u</mi><mi mathvariant=\"normal\">s</mi><mi mathvariant=\"normal\">t</mi></mrow><mo>&#x0002C;</mo><mi>T</mi></mrow></msub></mrow></math></th>\n",
" <td id=\"T_8eda3_row23_col0\" class=\"data row23 col0\" >-6.000000e-01</td>\n",
" <td id=\"T_8eda3_row23_col1\" class=\"data row23 col1\" >2.654750e-01</td>\n",
" <td id=\"T_8eda3_row23_col2\" class=\"data row23 col2\" >2.260100</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_8eda3_level0_row24\" class=\"row_heading level0 row24\" ><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><msubsup><mi>a</mi><mrow><mi mathvariant=\"normal\">p</mi><mi mathvariant=\"normal\">s</mi></mrow><mrow><mi mathvariant=\"normal\">E</mi><mi mathvariant=\"normal\">E</mi></mrow></msubsup></mrow></math></th>\n",
" <td id=\"T_8eda3_row24_col0\" class=\"data row24 col0\" >3.000000e-03</td>\n",
" <td id=\"T_8eda3_row24_col1\" class=\"data row24 col1\" >4.561110e-03</td>\n",
" <td id=\"T_8eda3_row24_col2\" class=\"data row24 col2\" >0.657735</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x756e71457790>"
]
},
"execution_count": 112,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# LaTeX expressions do not render properly with pydata-sphinx-theme.\n",
Expand Down
4 changes: 2 additions & 2 deletions mflike/mflike.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@

The theory :math:`C_{\ell}` are then summed with the (possibly frequency
integrated) foreground power spectra from the ``BandpowerForeground`` class,
and modified by systematic effects and calibrations.
The underlying foreground spectra are computed through ``fgspectra``.
and modified by systematic effects and calibrations.
The underlying foreground spectra are computed through ``fgspectra``.


This class applies three kinds of systematic effects to the CMB + foreground power spectrum:
Expand Down