-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Multiparam Typeclass version of categorical functors.
This version is nice cause it collapes `Functor` and `FunctorOf` into one class and it prevents overlapping instances when the same domain and co-domain can yield multiple functors. However, it also has more difficulty with instance resolution and requires more type ascription/application.
- Loading branch information
Showing
2 changed files
with
266 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
{-# LANGUAGE DataKinds #-} | ||
{-# LANGUAGE GADTs #-} | ||
{-# LANGUAGE ImpredicativeTypes #-} | ||
{-# LANGUAGE PolyKinds #-} | ||
{-# LANGUAGE RecordWildCards #-} | ||
{-# LANGUAGE StandaloneKindSignatures #-} | ||
{-# LANGUAGE TypeFamilies #-} | ||
|
||
-- | A scratchpad for implementing Iceland Jack and Ed Kmett's | ||
-- categorical functor ideas. | ||
-- | ||
-- If possible, this ought to give us a kind generic functor to | ||
-- replace 'GBifunctor'. | ||
-- | ||
-- We also ought to be able to use the same tricks to get a kind | ||
-- generic Monoidal Functor class. | ||
module Data.Functor.CategoricalV2 where | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
import Control.Category | ||
import Control.Category.Tensor (Iso (..)) | ||
import Control.Monad qualified as Hask | ||
import Data.Bifunctor qualified as Hask | ||
import Data.Bool (Bool) | ||
import Data.Either (Either) | ||
import Data.Functor.Contravariant (Op (..), Predicate (..)) | ||
import Data.Functor.Contravariant qualified as Hask | ||
import Data.Functor.Identity (Identity) | ||
import Data.Kind (Constraint, Type) | ||
import Data.Maybe (Maybe (..)) | ||
import Data.Monoid (Endo (..)) | ||
import Data.Profunctor qualified as Hask | ||
import Data.Semigroupoid | ||
import Witherable qualified as Hask | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
class (Category dom, Category cod) => Functor (dom :: from -> from -> Type) (cod :: to -> to -> Type) (f :: from -> to) where | ||
map :: dom a b -> cod (f a) (f b) | ||
|
||
type Cat i = i -> i -> Type | ||
|
||
type Nat :: Cat s -> Cat t -> Cat (s -> t) | ||
data Nat source target f f' where | ||
Nat :: (forall x. target (f x) (f' x)) -> Nat source target f f' | ||
|
||
instance (Semigroupoid c1, Semigroupoid c2) => Semigroupoid (Nat c1 c2) where | ||
o :: Nat c1 c2 j k1 -> Nat c1 c2 i j -> Nat c1 c2 i k1 | ||
Nat c1 `o` Nat c2 = Nat (c1 `o` c2) | ||
|
||
instance (Semigroupoid c1, Semigroupoid c2, Category c1, Category c2) => Category (Nat c1 c2) where | ||
id :: Nat c1 c2 a a | ||
id = Nat id | ||
|
||
(.) = o | ||
|
||
type Endofunctor :: Cat ob -> (ob -> ob) -> Constraint | ||
type Endofunctor cat = Functor cat cat | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
newtype FromFunctor f a = FromFunctor (f a) | ||
deriving newtype (Hask.Functor) | ||
|
||
instance (Hask.Functor f) => Functor (->) (->) (FromFunctor f) where | ||
map :: (a -> b) -> FromFunctor f a -> FromFunctor f b | ||
map = Hask.fmap | ||
|
||
fmap :: (Functor (->) (->) f) => (a -> b) -> f a -> f b | ||
fmap = map | ||
|
||
deriving via (FromFunctor Identity) instance Functor (->) (->) Identity | ||
|
||
deriving via (FromFunctor []) instance Functor (->) (->) [] | ||
|
||
deriving via (FromFunctor ((,) a)) instance Functor (->) (->) ((,) a) | ||
|
||
deriving via (FromFunctor ((->) r)) instance Functor (->) (->) ((->) r) | ||
|
||
deriving via (FromFunctor Maybe) instance Functor (->) (->) Maybe | ||
|
||
deriving via (FromFunctor (Either e)) instance Functor (->) (->) (Either e) | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
newtype FromContra f a = FromContra {getContra :: f a} | ||
deriving newtype (Hask.Contravariant) | ||
|
||
instance (Hask.Contravariant f) => Functor Op (->) (FromContra f) where | ||
map :: Op a b -> (FromContra f) a -> (FromContra f) b | ||
map = Hask.contramap . getOp | ||
|
||
contramap :: (Functor Op (->) f) => (a -> b) -> f b -> f a | ||
contramap = map . Op | ||
|
||
deriving via (FromContra Predicate) instance Functor Op (->) Predicate | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
type (<->) :: Cat Type | ||
type (<->) = Iso (->) | ||
|
||
instance Functor (<->) (->) Endo where | ||
map :: (a <-> b) -> Endo a -> Endo b | ||
map Iso {..} (Endo f) = Endo (fwd . f . bwd) | ||
|
||
invmap :: (Functor (<->) (->) f) => (a -> b) -> (b -> a) -> f a -> f b | ||
invmap f g = map (Iso f g) | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
newtype FromBifunctor f a b = FromBifunctor (f a b) | ||
deriving newtype (Hask.Functor, Hask.Bifunctor) | ||
|
||
instance (Hask.Bifunctor p, Functor (->) (->) (p x)) => Functor (->) (->) (FromBifunctor p x) where | ||
map :: (a -> b) -> FromBifunctor p x a -> FromBifunctor p x b | ||
map f (FromBifunctor pab) = FromBifunctor (map f pab) | ||
|
||
instance (Hask.Bifunctor p, forall x. Functor (->) (->) (p x)) => Functor (->) (Nat (->) (->)) (FromBifunctor p) where | ||
map :: (a -> b) -> (Nat (->) (->)) (FromBifunctor p a) (FromBifunctor p b) | ||
map f = Nat (\(FromBifunctor pax) -> FromBifunctor (Hask.first f pax)) | ||
|
||
first :: forall p a b. (Functor (->) (Nat (->) (->)) p) => (a -> b) -> forall x. p a x -> p b x | ||
first f = let (Nat f') = (map :: (a -> b) -> Nat (->) (->) (p a) (p b)) f in f' | ||
|
||
second :: (Functor (->) (->) (p x)) => (a -> b) -> p x a -> p x b | ||
second = fmap | ||
|
||
bimap :: (Functor (->) (->) (p a), Functor (->) (Nat (->) (->)) p) => (a -> b) -> (c -> d) -> p a c -> p b d | ||
bimap f g = first f . second g | ||
|
||
-- deriving via (FromBifunctor (,)) instance Functor (->) (Nat (->) (->)) (,) | ||
|
||
instance Functor (->) (Nat (->) (->)) (,) where | ||
map :: (a -> b) -> Nat (->) (->) ((,) a) ((,) b) | ||
map f = Nat (Hask.first f) | ||
|
||
instance Functor (->) (Nat (->) (->)) Either where | ||
map :: (e -> e1) -> Nat (->) (->) (Either e) (Either e1) | ||
map f = Nat (Hask.first f) | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
newtype FromProfunctor f a b = FromProfunctor (f a b) | ||
deriving newtype (Hask.Functor, Hask.Profunctor) | ||
|
||
instance (Hask.Profunctor p, Functor (->) (->) (p x)) => Functor (->) (->) (FromProfunctor p x) where | ||
map :: (a -> b) -> FromProfunctor p x a -> FromProfunctor p x b | ||
map f (FromProfunctor pxa) = FromProfunctor (map f pxa) | ||
|
||
instance (Hask.Profunctor p) => Functor Op (Nat (->) (->)) (FromProfunctor p) where | ||
map :: Op a b -> Nat (->) (->) ((FromProfunctor p) a) ((FromProfunctor p) b) | ||
map (Op f) = Nat (\(FromProfunctor pax) -> FromProfunctor (Hask.lmap f pax)) | ||
|
||
lmap :: forall p a b. (Functor Op (Nat (->) (->)) p) => (a -> b) -> forall x. p b x -> p a x | ||
lmap f = let (Nat f') = (map :: Op b a -> Nat (->) (->) (p b) (p a)) (Op f) in f' | ||
|
||
rmap :: (Functor (->) (->) (f x)) => (a -> b) -> f x a -> f x b | ||
rmap = fmap | ||
|
||
dimap :: (Functor Op (Nat (->) (->)) p, forall x. Functor (->) (->) (p x)) => (a -> b) -> (c -> d) -> p b c -> p a d | ||
dimap f g = lmap f . rmap g | ||
|
||
instance Functor Op (Nat (->) (->)) (->) where | ||
map :: Op a b -> Nat (->) (->) ((->) a) ((->) b) | ||
map (Op f) = Nat (. f) | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
newtype FromFilterable f a = FromFilterable (f a) | ||
deriving newtype (Hask.Functor, Hask.Filterable) | ||
|
||
instance (Hask.Filterable f) => Functor (Hask.Star Maybe) (->) (FromFilterable f) where | ||
map :: Hask.Star Maybe a b -> FromFilterable f a -> FromFilterable f b | ||
map (Hask.Star f) (FromFilterable fa) = FromFilterable (Hask.mapMaybe f fa) | ||
|
||
mapMaybe :: (Functor (Hask.Star Maybe) (->) f) => (a -> Maybe b) -> f a -> f b | ||
mapMaybe f = map (Hask.Star f) | ||
|
||
catMaybes :: (Functor (Hask.Star Maybe) (->) f) => f (Maybe a) -> f a | ||
catMaybes = map (Hask.Star id) | ||
|
||
filter :: (Functor (Hask.Star Maybe) (->) f) => (a -> Bool) -> f a -> f a | ||
filter f = map (Hask.Star (\a -> if f a then Just a else Nothing)) | ||
|
||
deriving via (FromFilterable []) instance Functor (Hask.Star Maybe) (->) [] | ||
|
||
deriving via (FromFilterable Maybe) instance Functor (Hask.Star Maybe) (->) Maybe | ||
|
||
-------------------------------------------------------------------------------- | ||
-- TODO: | ||
|
||
type Trifunctor :: (Type -> Type -> Type -> Type) -> Constraint | ||
type Trifunctor = Functor (->) (Nat (->) (Nat (->) (->))) | ||
|
||
instance Functor (->) (Nat (->) (Nat (->) (->))) (,,) where | ||
map :: (a -> b) -> (Nat (->) (Nat (->) (->))) ((,,) a) ((,,) b) | ||
map f = Nat (Nat (\(x, y, z) -> (f x, y, z))) | ||
|
||
instance Functor (->) (Nat (->) (->)) ((,,) x) where | ||
map :: (a -> b) -> Nat (->) (->) ((,,) x a) ((,,) x b) | ||
map f = Nat (\(x, y, z) -> (x, f y, z)) | ||
|
||
deriving via FromFunctor ((,,) x y) instance Functor (->) (->) ((,,) x y) | ||
|
||
tripleFirst :: (a -> b) -> (a, x, y) -> (b, x, y) | ||
tripleFirst f = let (Nat (Nat f')) = (map :: (a -> b) -> Nat (->) (Nat (->) (->)) ((,,) a) ((,,) b)) f in f' | ||
|
||
tripleSecond :: (a -> b) -> (x, a, z) -> (x, b, z) | ||
tripleSecond f = let (Nat f') = (map :: (a -> b) -> Nat (->) (->) ((,,) x a) ((,,) x b)) f in f' | ||
|
||
tripleThird :: (a -> b) -> (x, y, a) -> (x, y, b) | ||
tripleThird = map | ||
|
||
-- newtype Mealy m s i o = Mealy { runMealy :: s -> i -> m (o, s) } | ||
-- deriving | ||
-- (Hask.Functor, Hask.Applicative, Hask.Monad) | ||
-- via Hask.StateT s (Hask.ReaderT i m) | ||
|
||
-- deriving via (FromFunctor (Mealy m s i)) instance (Hask.Functor m) => Functor (Mealy m s i) | ||
|
||
-- instance Functor (Mealy m s) where | ||
-- type Dom (Mealy m s) = Op | ||
-- type Cod (Mealy m s) = Nat (->) (->) | ||
|
||
-- map :: Dom (Mealy m s) a b -> Cod (Mealy m s) (Mealy m s a) (Mealy m s b) | ||
-- map = _ | ||
|
||
-------------------------------------------------------------------------------- | ||
|
||
-- Some Ideal Interface | ||
-- THIS IS ALL WRONG | ||
|
||
class Map1 dom cod f | f -> cod, f -> dom where | ||
map1 :: dom a b -> cod (f a) (f b) | ||
|
||
instance (Hask.Functor f) => Map1 (->) (->) (FromFunctor f) where | ||
map1 f (FromFunctor fa) = FromFunctor (Hask.fmap f fa) | ||
|
||
instance (Hask.Contravariant f) => Map1 Op (->) (FromContra f) where | ||
map1 f (FromContra fa) = FromContra (Hask.contramap (getOp f) fa) | ||
|
||
instance (Hask.Filterable f) => Map1 (Hask.Star Maybe) (->) (FromFilterable f) where | ||
map1 :: Hask.Star Maybe a b -> FromFilterable f a -> FromFilterable f b | ||
map1 (Hask.Star f) (FromFilterable fa) = FromFilterable (Hask.mapMaybe f fa) | ||
|
||
instance (Hask.Bifunctor p) => Map1 (->) (->) (FromBifunctor p x) where | ||
map1 :: (a -> b) -> FromBifunctor p x a -> FromBifunctor p x b | ||
map1 f (FromBifunctor pab) = FromBifunctor (Hask.fmap f pab) | ||
Check failure on line 250 in src/Data/Functor/CategoricalV2.hs GitHub Actions / build (3.6, 9.0.2)
Check failure on line 250 in src/Data/Functor/CategoricalV2.hs GitHub Actions / build (3.6, 9.2.8)
Check failure on line 250 in src/Data/Functor/CategoricalV2.hs GitHub Actions / build (3.10, 9.0.2)
|
||
|
||
instance (Hask.Profunctor p) => Map1 (->) (->) (FromProfunctor p x) where | ||
map1 f (FromProfunctor pab) = FromProfunctor (Hask.rmap f pab) | ||
|
||
class Map2 dom cod f where | ||
map2 :: dom a b -> cod (f a x) (f b x) | ||
|
||
instance (Hask.Bifunctor p) => Map1 (->) (Nat (->) (->)) (FromBifunctor p) where | ||
map1 f = Nat (\(FromBifunctor pab) -> FromBifunctor (Hask.first f pab)) | ||
|
||
instance (Hask.Profunctor p) => Map1 Op (Nat (->) (->)) (FromProfunctor p) where | ||
map1 f = Nat (\(FromProfunctor pab) -> FromProfunctor (Hask.lmap (getOp f) pab)) | ||
|
||
class Map3 dom cod f where | ||
map3 :: dom a b -> cod (f a x y) (f b x y) |