Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generic Functor attempt 1: IcelandJack's categorical functor proposal #46

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions monoidal-functors.cabal
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ library
semigroupoids >= 6.0.0 && < 6.1,
these >= 1.2 && < 1.3,
mtl >= 2.2.2 && < 2.4,
witherable >= 0.4.2 && < 0.5,

exposed-modules:
Control.Category.Tensor
Expand All @@ -72,6 +73,8 @@ library
Data.Bifunctor.Module
Data.Bifunctor.Monoidal
Data.Bifunctor.Monoidal.Specialized
Data.Functor.Categorical
Data.Functor.CategoricalV2
Data.Functor.Invariant
Data.Functor.Module
Data.Functor.Monoidal
Expand Down
299 changes: 299 additions & 0 deletions src/Data/Functor/Categorical.hs
Original file line number Diff line number Diff line change
@@ -0,0 +1,299 @@
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ImpredicativeTypes #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeFamilies #-}

-- | A scratchpad for implementing Iceland Jack and Ed Kmett's
-- categorical functor ideas.
--
-- If possible, this ought to give us a kind generic functor to
-- replace 'GBifunctor'.
--
-- We also ought to be able to use the same tricks to get a kind
-- generic Monoidal Functor class.
module Data.Functor.Categorical where

--------------------------------------------------------------------------------

import Control.Applicative qualified as Hask
import Control.Category
import Control.Category.Tensor (Iso (..))
import Control.Monad qualified as Hask
import Control.Monad.Reader qualified as Hask
import Control.Monad.State qualified as Hask
import Data.Bifunctor qualified as Hask
import Data.Bool (Bool (..))
import Data.Either (Either)
import Data.Function (($))
import Data.Functor.Contravariant (Op (..), Predicate (..))
import Data.Functor.Contravariant qualified as Hask
import Data.Functor.Identity (Identity)
import Data.Kind (Constraint, Type)
import Data.Maybe (Maybe (..))
import Data.Monoid (Endo (..))
import Data.Profunctor qualified as Hask
import Data.Semigroupoid
import Witherable qualified as Hask

--------------------------------------------------------------------------------

type Functor :: (from -> to) -> Constraint
class (Category (Dom f), Category (Cod f)) => Functor (f :: from -> to) where
type Dom f :: from -> from -> Type
type Cod f :: to -> to -> Type

map :: Dom f a b -> Cod f (f a) (f b)

type Cat i = i -> i -> Type

type Nat :: Cat s -> Cat t -> Cat (s -> t)
newtype Nat source target f f' where
Nat :: (forall x. target (f x) (f' x)) -> Nat source target f f'

runNat :: Nat source target f f' -> (forall x. target (f x) (f' x))
runNat (Nat f) = f

infixr 0 ~>
type (~>) c1 c2 = Nat c1 c2

instance (Semigroupoid c1, Semigroupoid c2) => Semigroupoid (Nat c1 c2) where
o :: Nat c1 c2 j k1 -> Nat c1 c2 i j -> Nat c1 c2 i k1
Nat c1 `o` Nat c2 = Nat (c1 `o` c2)

instance (Semigroupoid c1, Semigroupoid c2, Category c1, Category c2) => Category (c1 ~> c2) where
id :: (c1 ~> c2) a a
id = Nat id

(.) = o

type FunctorOf :: Cat from -> Cat to -> (from -> to) -> Constraint
class (Functor f, dom ~ Dom f, cod ~ Cod f) => FunctorOf dom cod f

instance (Functor f, dom ~ Dom f, cod ~ Cod f) => FunctorOf dom cod f

type EndofunctorOf :: Cat ob -> (ob -> ob) -> Constraint
type EndofunctorOf cat = FunctorOf cat cat

--------------------------------------------------------------------------------

newtype FromFunctor f a = FromFunctor (f a)
deriving newtype (Hask.Functor)

instance (Hask.Functor f) => Functor (FromFunctor f) where
type Dom (FromFunctor f) = (->)
type Cod (FromFunctor f) = (->)

map :: (a -> b) -> FromFunctor f a -> FromFunctor f b
map = Hask.fmap

fmap :: (FunctorOf (->) (->) f) => (a -> b) -> f a -> f b
fmap = map

deriving via (FromFunctor Identity) instance Functor Identity

deriving via (FromFunctor []) instance Functor []

deriving via (FromFunctor ((,) a)) instance Functor ((,) a)

deriving via (FromFunctor ((->) r)) instance Functor ((->) r)

deriving via (FromFunctor Maybe) instance Functor Maybe

deriving via (FromFunctor (Either e)) instance Functor (Either e)

--------------------------------------------------------------------------------

newtype FromContra f a = FromContra {getContra :: f a}
deriving newtype (Hask.Contravariant)

instance (Hask.Contravariant f) => Functor (FromContra f) where
type Dom (FromContra f) = Op
type Cod (FromContra f) = (->)

map :: Dom (FromContra f) a b -> Cod (FromContra f) ((FromContra f) a) ((FromContra f) b)
map = Hask.contramap . getOp

contramap :: (FunctorOf Op (->) f) => (a -> b) -> f b -> f a
contramap = map . Op

deriving via (FromContra Predicate) instance Functor Predicate

--------------------------------------------------------------------------------

type (<->) :: Cat Type
type (<->) = Iso (->)

instance Functor Endo where
type Dom Endo = (<->)
type Cod Endo = (->)

map :: (a <-> b) -> Endo a -> Endo b
map Iso {..} (Endo f) = Endo (fwd . f . bwd)

invmap :: (FunctorOf (<->) (->) f) => (a -> b) -> (b -> a) -> f a -> f b
invmap f g = map (Iso f g)

--------------------------------------------------------------------------------

newtype FromBifunctor f a b = FromBifunctor (f a b)
deriving newtype (Hask.Functor, Hask.Bifunctor)

instance (Hask.Bifunctor p, FunctorOf (->) (->) (p x)) => Functor (FromBifunctor p x) where
type Dom (FromBifunctor p x) = (->)
type Cod (FromBifunctor p x) = (->)

map :: (a -> b) -> FromBifunctor p x a -> FromBifunctor p x b
map f (FromBifunctor pab) = FromBifunctor (map f pab)

instance (Hask.Bifunctor p, forall x. FunctorOf (->) (->) (p x)) => Functor (FromBifunctor p) where
type Dom (FromBifunctor p) = (->)
type Cod (FromBifunctor p) = (->) ~> (->)

map :: (a -> b) -> ((->) ~> (->)) (FromBifunctor p a) (FromBifunctor p b)
map f = Nat (\(FromBifunctor pax) -> FromBifunctor (Hask.first f pax))

first :: (FunctorOf (->) ((->) ~> (->)) p) => (a -> b) -> p a x -> p b x
first = runNat . map

Check failure on line 159 in src/Data/Functor/Categorical.hs

View workflow job for this annotation

GitHub Actions / build (3.10, 9.0.2)

• Couldn't match type: forall (x1 :: s0).

second :: (FunctorOf (->) (->) (p x)) => (a -> b) -> p x a -> p x b
second = fmap

bimap :: (FunctorOf (->) (->) (p a), FunctorOf (->) ((->) ~> (->)) p) => (a -> b) -> (c -> d) -> p a c -> p b d
bimap f g = first f . second g

deriving via (FromBifunctor (,)) instance Functor (,)

deriving via (FromBifunctor Either) instance Functor Either

--------------------------------------------------------------------------------

newtype FromProfunctor f a b = FromProfunctor (f a b)
deriving newtype (Hask.Functor, Hask.Profunctor)

instance (Hask.Profunctor p, FunctorOf (->) (->) (p x)) => Functor (FromProfunctor p x) where
type Dom (FromProfunctor p x) = (->)
type Cod (FromProfunctor p x) = (->)

map :: (a -> b) -> Cod (FromProfunctor p x) (FromProfunctor p x a) (FromProfunctor p x b)
map f (FromProfunctor pxa) = FromProfunctor (map f pxa)

instance (Hask.Profunctor p) => Functor (FromProfunctor p) where
type Dom (FromProfunctor p) = Op
type Cod (FromProfunctor p) = (->) ~> (->)

map :: Op a b -> ((->) ~> (->)) ((FromProfunctor p) a) ((FromProfunctor p) b)
map (Op f) = Nat (\(FromProfunctor pax) -> FromProfunctor (Hask.lmap f pax))

lmap :: (FunctorOf Op ((->) ~> (->)) p) => (a -> b) -> p b x -> p a x
lmap = runNat . map . Op

Check failure on line 191 in src/Data/Functor/Categorical.hs

View workflow job for this annotation

GitHub Actions / build (3.10, 9.0.2)

• Couldn't match type: forall (x1 :: s1).

rmap :: (FunctorOf (->) (->) (f x)) => (a -> b) -> f x a -> f x b
rmap = fmap

dimap :: (FunctorOf Op ((->) ~> (->)) p, forall x. FunctorOf (->) (->) (p x)) => (a -> b) -> (c -> d) -> p b c -> p a d
dimap f g = lmap f . rmap g

deriving via (FromProfunctor (->)) instance Functor (->)

--------------------------------------------------------------------------------

newtype FromFilterable f a = FromFilterable (f a)
deriving newtype (Hask.Functor, Hask.Filterable)

instance (Hask.Filterable f) => Functor (FromFilterable f) where
type Dom (FromFilterable f) = (Hask.Star Maybe)
type Cod (FromFilterable f) = (->)

map :: Hask.Star Maybe a b -> FromFilterable f a -> FromFilterable f b
map (Hask.Star f) (FromFilterable fa) = FromFilterable (Hask.mapMaybe f fa)

mapMaybe :: (FunctorOf (Hask.Star Maybe) (->) f) => (a -> Maybe b) -> f a -> f b
mapMaybe f = map (Hask.Star f)

catMaybes :: (FunctorOf (Hask.Star Maybe) (->) f) => f (Maybe a) -> f a
catMaybes = map (Hask.Star id)

filter :: (FunctorOf (Hask.Star Maybe) (->) f) => (a -> Bool) -> f a -> f a
filter f = map (Hask.Star (\a -> if f a then Just a else Nothing))

-- NOTE: These instances conflict with our Covariant Functor
-- instances. Switching from associated types to Multi Parameter type
-- classes would fix this:

-- deriving via (FromFilterable []) instance Functor []

-- deriving via (FromFilterable Maybe) instance Functor Maybe

--------------------------------------------------------------------------------

type Trifunctor :: (Type -> Type -> Type -> Type) -> Constraint
type Trifunctor = FunctorOf (->) ((->) ~> (->) ~> (->))

instance Functor (,,) where
type Dom (,,) = (->)
type Cod (,,) = (->) ~> (->) ~> (->)

map :: (a -> b) -> ((->) ~> (->) ~> (->)) ((,,) a) ((,,) b)
map f = Nat (Nat (\(x, y, z) -> (f x, y, z)))

instance Functor ((,,) x) where
type Dom ((,,) x) = (->)
type Cod ((,,) x) = (->) ~> (->)

map :: (a -> b) -> ((->) ~> (->)) ((,,) x a) ((,,) x b)
map f = Nat (\(x, y, z) -> (x, f y, z))

deriving via FromFunctor ((,,) x y) instance Functor ((,,) x y)

tripleFirst :: (a -> b) -> (a, x, y) -> (b, x, y)
tripleFirst f = let (Nat (Nat f')) = map f in f'

tripleSecond :: (a -> b) -> (x, a, z) -> (x, b, z)
tripleSecond = runNat . map

Check failure on line 255 in src/Data/Functor/Categorical.hs

View workflow job for this annotation

GitHub Actions / build (3.10, 9.0.2)

• Couldn't match type: forall (x1 :: s2).

tripleThird :: (a -> b) -> (x, y, a) -> (x, y, b)
tripleThird = map

newtype MealyM m s i o = MealyM {runMealyM :: s -> i -> m (o, s)}
deriving
(Hask.Functor, Hask.Applicative, Hask.Monad)
via Hask.StateT s (Hask.ReaderT i m)

deriving via (FromFunctor (MealyM m s i)) instance (Hask.Functor m) => Functor (MealyM m s i)

instance (FunctorOf (->) (->) m) => Functor (MealyM m) where
type Dom (MealyM m) = (<->)
type Cod (MealyM m) = Nat Op ((->) ~> (->))

map :: (a <-> b) -> Nat Op ((->) ~> (->)) (MealyM m a) (MealyM m b)
map Iso {..} = Nat $ Nat $ \(MealyM mealy) -> MealyM $ \s i -> map (map fwd) $ mealy (bwd s) i

instance Functor (MealyM m s) where
type Dom (MealyM m s) = Op
type Cod (MealyM m s) = (->) ~> (->)

map :: Op a b -> Nat (->) (->) (MealyM m s a) (MealyM m s b)
map (Op f) = Nat $ \(MealyM mealy) -> MealyM $ \s -> mealy s . f

--------------------------------------------------------------------------------

data MyHKD f = MyHKD {one :: f Bool, two :: f ()}

instance Functor MyHKD where
type Dom MyHKD = (->) ~> (->)
type Cod MyHKD = (->)

map :: (Nat (->) (->)) f g -> MyHKD f -> MyHKD g
map (Nat nat) MyHKD {..} = MyHKD (nat one) (nat two)

newtype MyHKD2 p = MyHKD2 {field :: p () Bool}

instance Functor MyHKD2 where
type Dom MyHKD2 = (->) ~> ((->) ~> (->))
type Cod MyHKD2 = (->)

map :: Dom MyHKD2 p q -> MyHKD2 p -> MyHKD2 q
map (Nat (Nat nat)) MyHKD2 {..} = MyHKD2 (nat field)
Loading
Loading