Skip to content

Commit

Permalink
Merge pull request #185 from stanford-oval/costorm-integration
Browse files Browse the repository at this point in the history
Costorm integration
  • Loading branch information
Yucheng-Jiang authored Sep 25, 2024
2 parents 33a03a3 + efac123 commit 564a507
Show file tree
Hide file tree
Showing 45 changed files with 5,191 additions and 270 deletions.
207 changes: 166 additions & 41 deletions README.md

Large diffs are not rendered by default.

Binary file added assets/co-storm-workflow.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
241 changes: 241 additions & 0 deletions examples/costorm_examples/run_costorm_gpt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
"""
Co-STORM pipeline powered by GPT-4o/4o-mini and Bing search engine.
You need to set up the following environment variables to run this script:
- OPENAI_API_KEY: OpenAI API key
- OPENAI_API_TYPE: OpenAI API type (e.g., 'openai' or 'azure')
- AZURE_API_BASE: Azure API base URL if using Azure API
- AZURE_API_VERSION: Azure API version if using Azure API
- BING_SEARCH_API_KEY: Biang search API key; BING_SEARCH_API_KEY: Bing Search API key, SERPER_API_KEY: Serper API key, BRAVE_API_KEY: Brave API key, or TAVILY_API_KEY: Tavily API key
Output will be structured as below
args.output_dir/
log.json # Log of information-seeking conversation
report.txt # Final article generated
"""

import os
import json
from argparse import ArgumentParser
from knowledge_storm.collaborative_storm.engine import CollaborativeStormLMConfigs, RunnerArgument, CoStormRunner
from knowledge_storm.collaborative_storm.modules.callback import LocalConsolePrintCallBackHandler
from knowledge_storm.lm import OpenAIModel, AzureOpenAIModel
from knowledge_storm.logging_wrapper import LoggingWrapper
from knowledge_storm.rm import YouRM, BingSearch, BraveRM, SerperRM, DuckDuckGoSearchRM, TavilySearchRM, SearXNG
from knowledge_storm.utils import load_api_key


def main(args):
load_api_key(toml_file_path='secrets.toml')
lm_config: CollaborativeStormLMConfigs = CollaborativeStormLMConfigs()
openai_kwargs = {
"api_key": os.getenv("OPENAI_API_KEY"),
"api_provider": "openai",
"temperature": 1.0,
"top_p": 0.9,
"api_base": None,
} if os.getenv('OPENAI_API_TYPE') == 'openai' else {
"api_key": os.getenv("AZURE_API_KEY"),
"temperature": 1.0,
"top_p": 0.9,
"api_base": os.getenv("AZURE_API_BASE"),
"api_version": os.getenv("AZURE_API_VERSION"),
}

ModelClass = OpenAIModel if os.getenv('OPENAI_API_TYPE') == 'openai' else AzureOpenAIModel
# If you are using Azure service, make sure the model name matches your own deployed model name.
# The default name here is only used for demonstration and may not match your case.
gpt_4o_mini_model_name = 'gpt-4o-mini'
gpt_4o_model_name = 'gpt-4o'
if os.getenv('OPENAI_API_TYPE') == 'azure':
openai_kwargs['api_base'] = os.getenv('AZURE_API_BASE')
openai_kwargs['api_version'] = os.getenv('AZURE_API_VERSION')

# STORM is a LM system so different components can be powered by different models.
# For a good balance between cost and quality, you can choose a cheaper/faster model for conv_simulator_lm
# which is used to split queries, synthesize answers in the conversation. We recommend using stronger models
# for outline_gen_lm which is responsible for organizing the collected information, and article_gen_lm
# which is responsible for generating sections with citations.
question_answering_lm = ModelClass(model=gpt_4o_model_name, max_tokens=1000, **openai_kwargs)
discourse_manage_lm = ModelClass(model=gpt_4o_model_name, max_tokens=500, **openai_kwargs)
utterance_polishing_lm = ModelClass(model=gpt_4o_model_name, max_tokens=2000, **openai_kwargs)
warmstart_outline_gen_lm = ModelClass(model=gpt_4o_model_name, max_tokens=500, **openai_kwargs)
question_asking_lm = ModelClass(model=gpt_4o_model_name, max_tokens=300, **openai_kwargs)
knowledge_base_lm = ModelClass(model=gpt_4o_model_name, max_tokens=1000, **openai_kwargs)

lm_config.set_question_answering_lm(question_answering_lm)
lm_config.set_discourse_manage_lm(discourse_manage_lm)
lm_config.set_utterance_polishing_lm(utterance_polishing_lm)
lm_config.set_warmstart_outline_gen_lm(warmstart_outline_gen_lm)
lm_config.set_question_asking_lm(question_asking_lm)
lm_config.set_knowledge_base_lm(knowledge_base_lm)

topic = input('Topic: ')
runner_argument = RunnerArgument(
topic=topic,
retrieve_top_k=args.retrieve_top_k,
max_search_queries=args.max_search_queries,
total_conv_turn=args.total_conv_turn,
max_search_thread=args.max_search_thread,
max_search_queries_per_turn=args.max_search_queries_per_turn,
warmstart_max_num_experts=args.warmstart_max_num_experts,
warmstart_max_turn_per_experts=args.warmstart_max_turn_per_experts,
warmstart_max_thread=args.warmstart_max_thread,
max_thread_num=args.max_thread_num,
max_num_round_table_experts=args.max_num_round_table_experts,
moderator_override_N_consecutive_answering_turn=args.moderator_override_N_consecutive_answering_turn,
node_expansion_trigger_count=args.node_expansion_trigger_count)
logging_wrapper = LoggingWrapper(lm_config)
callback_handler = LocalConsolePrintCallBackHandler() if args.enable_log_print else None

# Co-STORM is a knowledge curation system which consumes information from the retrieval module.
# Currently, the information source is the Internet and we use search engine API as the retrieval module.
match args.retriever:
case 'bing':
rm = BingSearch(bing_search_api=os.getenv('BING_SEARCH_API_KEY'), k=runner_argument.retrieve_top_k)
case 'you':
rm = YouRM(ydc_api_key=os.getenv('YDC_API_KEY'), k=runner_argument.retrieve_top_k)
case 'brave':
rm = BraveRM(brave_search_api_key=os.getenv('BRAVE_API_KEY'), k=runner_argument.retrieve_top_k)
case 'duckduckgo':
rm = DuckDuckGoSearchRM(k=runner_argument.retrieve_top_k, safe_search='On', region='us-en')
case 'serper':
rm = SerperRM(serper_search_api_key=os.getenv('SERPER_API_KEY'), query_params={'autocorrect': True, 'num': 10, 'page': 1})
case 'tavily':
rm = TavilySearchRM(tavily_search_api_key=os.getenv('TAVILY_API_KEY'), k=runner_argument.retrieve_top_k, include_raw_content=True)
case 'searxng':
rm = SearXNG(searxng_api_key=os.getenv('SEARXNG_API_KEY'), k=runner_argument.retrieve_top_k)
case _:
raise ValueError(f'Invalid retriever: {args.retriever}. Choose either "bing", "you", "brave", "duckduckgo", "serper", "tavily", or "searxng"')

costorm_runner = CoStormRunner(lm_config=lm_config,
runner_argument=runner_argument,
logging_wrapper=logging_wrapper,
rm=rm,
callback_handler=callback_handler)

# warm start the system
costorm_runner.warm_start()

# Below is an example of how users may interact with Co-STORM to seek information together
# In actual deployment, we suggest allowing the user to decide whether to observe the agent utterance or inject a turn

# observing Co-STORM LLM agent utterance for 5 turns
for _ in range(1):
conv_turn = costorm_runner.step()
print(f"**{conv_turn.role}**: {conv_turn.utterance}\n")

# active engaging by injecting your utterance
your_utterance = input('Your utterance: ')
costorm_runner.step(user_utterance=your_utterance)

# continue observing
conv_turn = costorm_runner.step()
print(f"**{conv_turn.role}**: {conv_turn.utterance}\n")

# generate report
costorm_runner.knowledge_base.reogranize()
article = costorm_runner.generate_report()

# save results
os.makedirs(args.output_dir, exist_ok=True)

# Save article
with open(os.path.join(args.output_dir, "report.md"), "w") as f:
f.write(article)

# Save logging
log_dump = costorm_runner.dump_logging_and_reset()
with open(os.path.join(args.output_dir, "log.json"), "w") as f:
json.dump(log_dump, f, indent=2)


if __name__ == '__main__':
parser = ArgumentParser()
# global arguments
parser.add_argument('--output-dir', type=str, default='./results/co-storm',
help='Directory to store the outputs.')
parser.add_argument('--retriever', type=str, choices=['bing', 'you', 'brave', 'serper', 'duckduckgo', 'tavily', 'searxng'],
help='The search engine API to use for retrieving information.')
# hyperparameters for co-storm
parser.add_argument(
'--retrieve_top_k',
type=int,
default=10,
help='Retrieve top k results for each query in retriever.'
)
parser.add_argument(
'--max_search_queries',
type=int,
default=2,
help='Maximum number of search queries to consider for each question.'
)
parser.add_argument(
'--total_conv_turn',
type=int,
default=20,
help='Maximum number of turns in conversation.'
)
parser.add_argument(
'--max_search_thread',
type=int,
default=5,
help='Maximum number of parallel threads for retriever.'
)
parser.add_argument(
'--max_search_queries_per_turn',
type=int,
default=3,
help='Maximum number of search queries to consider in each turn.'
)
parser.add_argument(
'--warmstart_max_num_experts',
type=int,
default=3,
help='Max number of experts in perspective-guided QA during warm start.'
)
parser.add_argument(
'--warmstart_max_turn_per_experts',
type=int,
default=2,
help='Max number of turns per perspective during warm start.'
)
parser.add_argument(
'--warmstart_max_thread',
type=int,
default=3,
help='Max number of threads for parallel perspective-guided QA during warm start.'
)
parser.add_argument(
'--max_thread_num',
type=int,
default=10,
help=("Maximum number of threads to use. "
"Consider reducing it if you keep getting 'Exceed rate limit' errors when calling the LM API.")
)
parser.add_argument(
'--max_num_round_table_experts',
type=int,
default=2,
help='Max number of active experts in round table discussion.'
)
parser.add_argument(
'--moderator_override_N_consecutive_answering_turn',
type=int,
default=3,
help=('Number of consecutive expert answering turns before the moderator overrides the conversation.')
)
parser.add_argument(
'--node_expansion_trigger_count',
type=int,
default=10,
help='Trigger node expansion for nodes that contain more than N snippets.'
)

# Boolean flags
parser.add_argument(
'--enable_log_print',
action='store_true',
help='If set, enable console log print.'
)

main(parser.parse_args())
12 changes: 6 additions & 6 deletions examples/README.md → examples/storm_examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ We host a number of example scripts for various customization of STORM (e.g., us
2. Run the following command under the root directory of the repository:

```
python examples/run_storm_wiki_mistral.py \
python examples/storm_examples/run_storm_wiki_mistral.py \
--url $URL \
--port $PORT \
--output-dir $OUTPUT_DIR \
Expand Down Expand Up @@ -50,7 +50,7 @@ By default, STORM is grounded on the Internet using the search engine, but it ca
To create the vector store offline, run
```
python examples/run_storm_wiki_gpt_with_VectorRM.py \
python examples/storm_examples/run_storm_wiki_gpt_with_VectorRM.py \
--output-dir $OUTPUT_DIR \
--vector-db-mode offline \
--offline-vector-db-dir $OFFLINE_VECTOR_DB_DIR \
Expand All @@ -65,7 +65,7 @@ By default, STORM is grounded on the Internet using the search engine, but it ca
To create the vector store online on a Qdrant server, run
```
python examples/run_storm_wiki_gpt_with_VectorRM.py \
python examples/storm_examples/run_storm_wiki_gpt_with_VectorRM.py \
--output-dir $OUTPUT_DIR \
--vector-db-mode online \
--online-vector-db-url $ONLINE_VECTOR_DB_URL \
Expand All @@ -83,12 +83,12 @@ By default, STORM is grounded on the Internet using the search engine, but it ca
- Run the following command under the root directory to downsample the dataset by filtering papers with terms `[cs.CV]` and get a csv file that match the format mentioned above.
```
python examples/helper/process_kaggle_arxiv_abstract_dataset.py --input-path $PATH_TO_THE_DOWNLOADED_FILE --output-path $PATH_TO_THE_PROCESSED_CSV
python examples/storm_examples/helper/process_kaggle_arxiv_abstract_dataset.py --input-path $PATH_TO_THE_DOWNLOADED_FILE --output-path $PATH_TO_THE_PROCESSED_CSV
```
- Run the following command to run STORM grounding on the processed dataset. You can input a topic related to computer vision (e.g., "The progress of multimodal models in computer vision") to see the generated article. (Note that the generated article may not include enough details since the quick test only use the abstracts of arxiv papers.)
```
python examples/run_storm_wiki_gpt_with_VectorRM.py \
python examples/storm_examples/run_storm_wiki_gpt_with_VectorRM.py \
--output-dir $OUTPUT_DIR \
--vector-db-mode offline \
--offline-vector-db-dir $OFFLINE_VECTOR_DB_DIR \
Expand All @@ -102,7 +102,7 @@ By default, STORM is grounded on the Internet using the search engine, but it ca
- For a quicker run, you can also download the pre-embedded vector store directly from [here](https://drive.google.com/file/d/1bijFkw5BKU7bqcmXMhO-5hg2fdKAL9bf/view?usp=share_link).
```
python examples/run_storm_wiki_gpt_with_VectorRM.py \
python examples/storm_examples/run_storm_wiki_gpt_with_VectorRM.py \
--output-dir $OUTPUT_DIR \
--vector-db-mode offline \
--offline-vector-db-dir $DOWNLOADED_VECTOR_DB_DR \
Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,8 @@
"""

import os
import sys
from argparse import ArgumentParser

sys.path.append('./')
from knowledge_storm import STORMWikiRunnerArguments, STORMWikiRunner, STORMWikiLMConfigs
from knowledge_storm.rm import VectorRM
from knowledge_storm.lm import OpenAIModel, AzureOpenAIModel
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,17 +18,10 @@
"""

import os
import sys
import re
import logging
from argparse import ArgumentParser

from knowledge_storm import STORMWikiRunnerArguments, STORMWikiRunner, STORMWikiLMConfigs
# Get the absolute path to the directory containing lm.py
lm_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'knowledge_storm'))

# Add this path to sys.path
sys.path.insert(0, lm_path)

# Now import lm directly
import lm
Expand Down
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@

from dspy import Example

sys.path.append('./src')
from knowledge_storm.lm import OllamaClient
from knowledge_storm.rm import YouRM, BingSearch, BraveRM, SerperRM, DuckDuckGoSearchRM, TavilySearchRM, SearXNG
from knowledge_storm import STORMWikiRunnerArguments, STORMWikiRunner, STORMWikiLMConfigs
Expand Down
File renamed without changes.
15 changes: 9 additions & 6 deletions knowledge_storm/__init__.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,10 @@
from .storm_wiki.engine import (
STORMWikiLMConfigs,
STORMWikiRunnerArguments,
STORMWikiRunner,
)
from .storm_wiki import *
from .collaborative_storm import *
from .encoder import *
from .interface import *
from .lm import *
from .rm import *
from .utils import *
from .dataclass import *

__version__ = "0.2.8"
__version__ = "1.0.0"
2 changes: 2 additions & 0 deletions knowledge_storm/collaborative_storm/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
from .modules import *
from .engine import *
Loading

0 comments on commit 564a507

Please sign in to comment.