Skip to content

stdlib-js/stats-base-dists-f-ctor

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Fisher's F

NPM version Build Status Coverage Status

F distribution constructor.

Installation

npm install @stdlib/stats-base-dists-f-ctor

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var F = require( '@stdlib/stats-base-dists-f-ctor' );

F( [d1, d2] )

Returns a F distribution object.

var f = new F();

var mu = f.mean;
// returns NaN

By default, d1 = 1.0 and d2 = 1.0. To create a distribution having a different d1 (numerator degrees of freedom) and d2 (denominator degrees of freedom), provide the corresponding arguments.

var f = new F( 2.0, 4.0 );

var mu = f.mean;
// returns 2.0

f

A F distribution object has the following properties and methods...

Writable Properties

f.d1

Numerator degrees of freedom of the distribution. d1 must be a positive number.

var f = new F();

var d1 = f.d1;
// returns 1.0

f.d1 = 3.0;

d1 = f.d1;
// returns 3.0

f.d2

Denominator degrees of freedom of the distribution. d2 must be a positive number.

var f = new F( 2.0, 4.0 );

var d2 = f.d2;
// returns 4.0

f.d2 = 3.0;

d2 = f.d2;
// returns 3.0

Computed Properties

F.prototype.entropy

Returns the differential entropy.

var f = new F( 4.0, 12.0 );

var entropy = f.entropy;
// returns ~1.12

F.prototype.kurtosis

Returns the excess kurtosis.

var f = new F( 4.0, 12.0 );

var kurtosis = f.kurtosis;
// returns ~26.143

F.prototype.mean

Returns the expected value.

var f = new F( 4.0, 12.0 );

var mu = f.mean;
// returns 1.2

F.prototype.mode

Returns the mode.

var f = new F( 4.0, 12.0 );

var mode = f.mode;
// returns ~0.429

F.prototype.skewness

Returns the skewness.

var f = new F( 4.0, 12.0 );

var skewness = f.skewness;
// returns ~3.207

F.prototype.stdev

Returns the standard deviation.

var f = new F( 4.0, 12.0 );

var s = f.stdev;
// returns ~1.122

F.prototype.variance

Returns the variance.

var f = new F( 4.0, 12.0 );

var s2 = f.variance;
// returns 1.26

Methods

F.prototype.cdf( x )

Evaluates the cumulative distribution function (CDF).

var f = new F( 2.0, 4.0 );

var y = f.cdf( 0.5 );
// returns ~0.36

F.prototype.pdf( x )

Evaluates the probability density function (PDF).

var f = new F( 2.0, 4.0 );

var y = f.pdf( 0.8 );
// returns ~0.364

F.prototype.quantile( p )

Evaluates the quantile function at probability p.

var f = new F( 2.0, 4.0 );

var y = f.quantile( 0.5 );
// returns ~0.828

y = f.quantile( 1.9 );
// returns NaN

Examples

var F = require( '@stdlib/stats-base-dists-f-ctor' );

var f = new F( 3.0, 5.0 );

var mu = f.mean;
// returns ~1.667

var mode = f.mode;
// returns ~0.238

var s2 = f.variance;
// returns ~11.111

var y = f.cdf( 0.8 );
// returns ~0.455

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.