-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
225 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
from typing import Any, Callable, Dict, List | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import ray | ||
import seaborn as sbn | ||
from numpy import ndarray | ||
from pandas import DataFrame | ||
from ray import tune | ||
from ray.tune import Analysis | ||
from sklearn.ensemble import AdaBoostClassifier as AdaBoost | ||
from sklearn.ensemble import RandomForestClassifier as RF | ||
from sklearn.linear_model import LogisticRegression as LR | ||
from sklearn.model_selection import cross_val_score, train_test_split | ||
from sklearn.neural_network import MLPClassifier | ||
from sklearn.preprocessing import MinMaxScaler, StandardScaler | ||
from sklearn.svm import SVC | ||
from typing_extensions import Literal | ||
|
||
from analysis.loading import load_diabetes, load_park, load_SPECT, load_trans | ||
|
||
Dataset = Literal["Diabetes", "Transfusion", "Parkinsons", "SPECT"] | ||
|
||
|
||
def print_results(analysis: Analysis, cols: List[str], dataset: Dataset) -> DataFrame: | ||
df = analysis.dataframe("acc") | ||
df = df.loc[:, cols] | ||
df.sort_values(by="acc", ascending=False, inplace=True) | ||
renamed_cols = [col.replace("config/", "") for col in df.columns] | ||
df.columns = renamed_cols | ||
print("\n") | ||
print(df.to_markdown(tablefmt="pretty")) | ||
print(f"Best config for {dataset}: ", analysis.get_best_config(metric="acc", mode="max")) | ||
return df | ||
|
||
|
||
def objective_function(model: Any, model_args: Dict = dict()) -> Callable: | ||
def objective(x: ndarray, y: ndarray, config: Dict) -> float: | ||
m = model(**model_args, **config) | ||
return float(np.mean(cross_val_score(m, x, y, cv=5))) | ||
# x_train, x_test, y_train, y_test = train_test_split(x, y, stratify=y, test_size=0.2) | ||
# m = model(**model_args, **config) | ||
# m.fit(x_train, y_train) | ||
# return float(m.score(x_test, y_test)) | ||
|
||
return objective | ||
|
||
|
||
def train_function(objective: Callable, dataset: str) -> Callable: | ||
mapping = { | ||
"Diabetes": load_diabetes, | ||
"Parkinsons": load_park, | ||
"Transfusion": load_trans, | ||
"SPECT": load_SPECT, | ||
} | ||
x, y = mapping[dataset]() | ||
# x = StandardScaler().fit_transform(x, y) | ||
x = MinMaxScaler().fit_transform(x, y) | ||
|
||
def train(config: Dict) -> None: | ||
acc = objective(x, y, config) | ||
tune.report(acc=acc) | ||
|
||
return train | ||
|
||
|
||
def test_mlp_params(capsys: Any) -> None: | ||
ray.init(num_cpus=8) | ||
for DATASET in ["Diabetes", "Transfusion", "Parkinsons", "SPECT"]: | ||
# for DATASET in ["Parkinsons", "SPECT"]: | ||
|
||
def objective( | ||
x: ndarray, | ||
y: ndarray, | ||
alpha: float, | ||
layer: int, | ||
# layer1: int, | ||
# layer2: int, | ||
# layer3: int, | ||
# layer4: int, | ||
# layer5: int, | ||
# layer6: int, | ||
iter: int, | ||
) -> float: | ||
mlp = MLPClassifier( | ||
# (layer1, layer2, layer3, layer4, layer5, layer6), | ||
(layer, layer, layer, layer, layer, layer), | ||
batch_size=32, | ||
alpha=alpha, | ||
max_iter=iter, | ||
) | ||
return np.mean(cross_val_score(mlp, x, y, cv=5)) | ||
x_train, x_test, y_train, y_test = train_test_split(x, y, stratify=y, test_size=0.2) | ||
mlp = MLPClassifier( | ||
# (layer1, layer2, layer3, layer4, layer5, layer6), | ||
(layer, layer, layer, layer, layer, layer), | ||
batch_size=32, | ||
alpha=alpha, | ||
max_iter=iter, | ||
) | ||
mlp.fit(x_train, y_train) | ||
return float(mlp.score(x_test, y_test)) | ||
|
||
def train(config: Any) -> None: | ||
x, y = load_diabetes() | ||
# x, y = load_trans() | ||
# x, y = load_park() | ||
# x, y = load_SPECT() | ||
x = StandardScaler().fit_transform(x, y) | ||
alpha = config["alpha"] | ||
layer = config["layer"] | ||
# layer1 = config["layer1"] | ||
# layer2 = config["layer2"] | ||
# layer3 = config["layer3"] | ||
# layer4 = config["layer4"] | ||
# layer5 = config["layer5"] | ||
# layer6 = config["layer6"] | ||
iters = config["iter"] | ||
# acc = objective(x, y, alpha, layer1, layer2, layer3, layer4, layer5, layer6, iters) | ||
acc = objective(x, y, alpha, layer, iters) | ||
tune.report(acc=acc) | ||
|
||
config = { | ||
"alpha": tune.qloguniform(1e-6, 1e-2, 5e-7), | ||
# "layer": tune.choice([4, 8, 16, 32, 64]), | ||
# "layer": tune.choice([4, 8, 16]), | ||
"layer": tune.choice([4, 8, 16, 32]), | ||
# "layer1": tune.choice([8, 16, 32, 64]), | ||
# "layer2": tune.choice([8, 16, 32, 64]), | ||
# "layer3": tune.choice([8, 16, 32, 64]), | ||
# "layer4": tune.choice([8, 16, 32, 64]), | ||
# "layer5": tune.choice([8, 16, 32, 64]), | ||
# "layer6": tune.choice([8, 16, 32, 64]), | ||
"iter": tune.choice([750, 1000]), | ||
} | ||
cols = ["acc", *list(map(lambda k: f"config/{k}", config.keys()))] | ||
|
||
# analysis = tune.run(train, config=config, num_samples=128) | ||
with capsys.disabled(): | ||
analysis = tune.run(train, config=config, num_samples=64) | ||
print_results(analysis, cols, DATASET) | ||
|
||
|
||
def test_rf_params(capsys: Any) -> None: | ||
ray.init(num_cpus=8) | ||
for DATASET in ["Diabetes", "Transfusion", "Parkinsons", "SPECT"]: | ||
|
||
objective = objective_function(RF) | ||
train = train_function(objective, DATASET) | ||
config = { | ||
"n_estimators": tune.choice([10, 20, 50, 100, 200, 400]), | ||
"min_samples_leaf": tune.randint(1, 5), | ||
"max_features": tune.choice(["auto", "log2", None, 0.1, 0.25, 0.5, 0.75]), | ||
"max_depth": tune.choice([None, 2, 4, 6, 8, 10, 20]), | ||
} | ||
cols = ["acc", *list(map(lambda k: f"config/{k}", config.keys()))] | ||
with capsys.disabled(): | ||
analysis = tune.run(train, config=config, num_samples=250) | ||
print_results(analysis, cols, DATASET) | ||
|
||
|
||
def test_ada_params(capsys: Any) -> None: | ||
ray.init(num_cpus=8, configure_logging=True, logging_level=ray.logging.WARNING) | ||
for DATASET in ["Diabetes", "Transfusion", "Parkinsons", "SPECT"]: | ||
objective = objective_function(AdaBoost) | ||
train = train_function(objective, DATASET) | ||
config = { | ||
"n_estimators": tune.choice([10, 50, 100, 200]), | ||
"learning_rate": tune.qloguniform(1e-5, 1, 5e-6), | ||
} | ||
cols = ["acc", *list(map(lambda k: f"config/{k}", config.keys()))] | ||
with capsys.disabled(): | ||
analysis = tune.run(train, config=config, num_samples=250) | ||
print_results(analysis, cols, DATASET) | ||
|
||
|
||
def test_lr_params(capsys: Any) -> None: | ||
ray.init(num_cpus=8, configure_logging=True, logging_level=ray.logging.WARNING) | ||
for DATASET in ["Diabetes", "Transfusion", "Parkinsons", "SPECT"]: | ||
|
||
objective = objective_function(LR, model_args=dict(solver="liblinear")) | ||
train = train_function(objective, DATASET) | ||
config = { | ||
"penalty": tune.choice(["l1", "l2"]), | ||
# "C": tune.qloguniform(1e-2, 10000, 5e-6), | ||
"C": tune.qloguniform(0.1, 2, 0.1), | ||
"max_iter": tune.choice([250, 500]), | ||
} | ||
cols = ["acc", *list(map(lambda k: f"config/{k}", config.keys()))] | ||
|
||
with capsys.disabled(): | ||
analysis = tune.run(train, config=config, num_samples=250) | ||
print_results(analysis, cols, DATASET) | ||
|
||
|
||
def test_svm_params(capsys: Any) -> None: | ||
ray.init(num_cpus=8, configure_logging=True, logging_level=ray.logging.WARNING) | ||
for DATASET in ["Diabetes", "Transfusion", "Parkinsons", "SPECT"]: | ||
|
||
objective = objective_function(SVC, model_args=dict(max_iter=500)) | ||
train = train_function(objective, DATASET) | ||
config = { | ||
# "kernel": tune.choice(["linear", "poly", "rbf"]), | ||
"C": tune.qloguniform(10, 100, 0.5), | ||
# "C": tune.qloguniform(1, 5, 0.5), | ||
# "shrinking": tune.choice([True, False]), | ||
} | ||
cols = ["acc", *list(map(lambda k: f"config/{k}", config.keys()))] | ||
|
||
with capsys.disabled(): | ||
analysis = tune.run(train, config=config, num_samples=250) | ||
df = print_results(analysis, cols, DATASET) | ||
ifg, ax = plt.subplots() | ||
sbn.scatterplot(data=df, x="C", y="acc", ax=ax) | ||
ax.set_xlabel("C") | ||
ax.set_ylabel("Accuracy") | ||
plt.show(block=False) | ||
plt.show() |