Skip to content

Commit

Permalink
little changes
Browse files Browse the repository at this point in the history
  • Loading branch information
supreethmv committed Oct 28, 2022
1 parent df27c86 commit c4625da
Show file tree
Hide file tree
Showing 9 changed files with 126 additions and 373 deletions.
52 changes: 52 additions & 0 deletions GCS.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
import itertools
import min_cut_solvers


def get_coalition_value(coalition, induced_subgraph_game):
agents = coalition.split(',')
return sum([induced_subgraph_game[','.join(map(str,sorted(map(int,key))))] for key in itertools.combinations(agents, 2)])


def evaluateSplits_min_cut(coalition, induced_subgraph_game, min_cut_solver = min_cut_solvers.min_cut_brute_force, **kwargs):
#print("coalition",coalition,end='=')
agents = coalition.split(',')
n = len(agents)
if n==1:
return [coalition], 0
if n==2:
c_value = induced_subgraph_game[coalition]
if c_value<=0:
#print([agents[0],agents[1]], 0)
return [agents[0],agents[1]], 0
else:
#print([coalition], c_value)
return [coalition], c_value
min_cut_mapping = {}
for idx,agent in enumerate(agents):
min_cut_mapping[agent] = str(idx+1)
subproblem_as_induced_subgraph_game = {','.join([min_cut_mapping[vertex] for vertex in map(str,sorted(map(int,key)))]):induced_subgraph_game[','.join(map(str,sorted(map(int,key))))] for key in itertools.combinations(agents, 2)}
xbest_brute, best_cost_brute = min_cut_solver(n,subproblem_as_induced_subgraph_game, **kwargs)
if 0 in xbest_brute and 1 in xbest_brute:
first_half = ','.join([agent for idx,agent in enumerate(agents) if xbest_brute[idx]])
second_half = ','.join([agent for idx,agent in enumerate(agents) if not xbest_brute[idx]])
bruteforce_solution_decoded = [first_half, second_half]
best_cost_brute = get_coalition_value(first_half, induced_subgraph_game) + get_coalition_value(second_half, induced_subgraph_game)
else:
bruteforce_solution_decoded = [coalition]
best_cost_brute = get_coalition_value(coalition, induced_subgraph_game)
#print(bruteforce_solution_decoded, best_cost_brute)
return bruteforce_solution_decoded, best_cost_brute


def gcs(induced_subgraph_game, min_cut_solver = min_cut_solvers.min_cut_brute_force, **kwargs):
grand_coalition = ','.join(map(str,sorted(map(int,(set([key.split(',')[i] for i in range(2) for key in induced_subgraph_game]))))))
temp = [grand_coalition]
optimal_cs = []
while(len(temp)):
c = temp.pop()
c_split_t,c_split_f = evaluateSplits_min_cut(c, induced_subgraph_game, min_cut_solver = min_cut_solver, **kwargs)
if len(c_split_t)==1:
optimal_cs+=c_split_t
if len(c_split_t)>1:
temp += c_split_t
return optimal_cs, sum([get_coalition_value(c, induced_subgraph_game) for c in optimal_cs])
57 changes: 57 additions & 0 deletions IDP.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import math
import itertools

import min_cut_solvers

def evaluateSplits(coalition, coalition_values, **kwargs):
#print("coalition",coalition,end='=')
agents = coalition.split(',')
n_agents = len(agents)
best_cost_brute = f[coalition]
xbest_brute = [coalition]
for b in range(1, 2**(n_agents-1)):
x = [int(term) for term in reversed(list(bin(b)[2:].zfill(n_agents)))]
first_half = ','.join([agent for i,agent in enumerate(agents) if int(x[i])])
second_half = ','.join([agent for i,agent in enumerate(agents) if not int(x[i])])
if best_cost_brute <= (f[first_half]+f[second_half]):
best_cost_brute = f[first_half]+f[second_half]
xbest_brute = [first_half, second_half]
#print(xbest_brute, best_cost_brute)
return xbest_brute, best_cost_brute


def idp(coalition_values, evaluateSplits = evaluateSplits, min_cut_solver = min_cut_solvers.min_cut_brute_force, **kwargs):
n_agents = math.ceil(math.log(len(coalition_values),2))
global t
t = {}
global f
f = {}
for coalition,coalition_value in coalition_values.items():
t[coalition] = [coalition]
f[coalition] = coalition_value
for coalition_size in range(2, n_agents):
if((math.ceil((2*n_agents)/3)<coalition_size) and (coalition_size < n_agents)): # Ignoring this condition will make this function work as DP instead of IDP
continue
coalitions_of_cur_size = list(itertools.combinations(map(str,range(1,n_agents+1)), coalition_size))
for curCoalition in coalitions_of_cur_size:
curCoalition = ','.join(curCoalition)
split_t, split_f = evaluateSplits(curCoalition, coalition_values, min_cut_solver = min_cut_solver, **kwargs)
if split_f > f[curCoalition]:
t[curCoalition] = split_t
f[curCoalition] = split_f
grand_coalition = ','.join(map(str,range(1,n_agents+1)))

split_t, split_f = evaluateSplits(grand_coalition, coalition_values, min_cut_solver = min_cut_solver, **kwargs)
if split_f > f[grand_coalition]:
t[grand_coalition] = split_t
f[grand_coalition] = split_f
temp = t[grand_coalition].copy()
optimal_cs = []
while(len(temp)):
C = temp.pop()
if len(t[C])==1:
optimal_cs+=t[C]
if(len(t[C])!=1):
temp += t[C]
optimal_cs_value = sum([f[coalition] for coalition in optimal_cs])
return optimal_cs, optimal_cs_value
Loading

0 comments on commit c4625da

Please sign in to comment.