-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #381 from Kritika75/features
Added Planting Analysis
- Loading branch information
Showing
1 changed file
with
150 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
import folium | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from geopy.geocoders import Nominatim | ||
|
||
def get_location_coordinates(area_name): | ||
geolocator = Nominatim(user_agent="Planting_Analysis") | ||
try: | ||
location = geolocator.geocode(area_name) | ||
if location: | ||
return location.latitude, location.longitude | ||
else: | ||
print("Area not found") | ||
return None, None | ||
except Exception as e: | ||
print(f"Error occurred while fetching coordinates: {e}") | ||
return None, None | ||
|
||
def interactive_map(lat, lon, area_name): | ||
area_map = folium.Map(location=[lat, lon], zoom_start=13) | ||
folium.Marker([lat, lon], popup=f"{area_name}").add_to(area_map) | ||
|
||
map_filename = f"{area_name}_map.html" | ||
area_map.save(map_filename) | ||
print(f"Interactive map saved as {map_filename}") | ||
return map_filename | ||
|
||
def trees_capacity(area_km2, tree_species): | ||
species_density = { | ||
"Oak": 200, | ||
"Pine": 300, | ||
"Maple": 150, | ||
"Cedar": 250, | ||
"Birch": 180, | ||
"Willow": 220, | ||
"Spruce": 260, | ||
"Fir": 240, | ||
"Aspen": 190, | ||
"Cherry": 200, | ||
"Magnolia": 170, | ||
"Redwood": 150, | ||
"Palms": 100, | ||
"Teak": 120, | ||
"Bamboo": 300, | ||
} | ||
if tree_species in species_density: | ||
trees_per_km2 = species_density[tree_species] | ||
else: | ||
trees_per_km2 = 100 # default density | ||
total_trees = area_km2 * trees_per_km2 | ||
return total_trees | ||
|
||
def oxygen_output(trees, tree_species): | ||
species_oxygen = { | ||
"Oak": 180, | ||
"Pine": 140, | ||
"Maple": 150, | ||
"Cedar": 170, | ||
"Birch": 160, | ||
"Willow": 155, | ||
"Spruce": 150, | ||
"Fir": 140, | ||
"Aspen": 145, | ||
"Cherry": 160, | ||
"Magnolia": 170, | ||
"Redwood": 150, | ||
"Palms": 50, | ||
"Teak": 120, | ||
"Bamboo": 75, | ||
} | ||
oxygen_per_tree = species_oxygen.get(tree_species, 118) | ||
total_oxygen = trees * oxygen_per_tree | ||
return total_oxygen | ||
|
||
|
||
def planting_recommendations(area_name): | ||
|
||
recommendations = { | ||
"tropical": ["Teak", "Bamboo", "Palm"], | ||
"temperate": ["Oak", "Maple", "Cherry"], | ||
"arid": ["Cedar", "Willow", "Fir"], | ||
"coastal": ["Birch", "Magnolia", "Redwood"], | ||
} | ||
|
||
if "tropical" in area_name.lower(): | ||
return recommendations["tropical"] | ||
elif "arid" in area_name.lower(): | ||
return recommendations["arid"] | ||
elif "coastal" in area_name.lower(): | ||
return recommendations["coastal"] | ||
else: | ||
return recommendations["temperate"] | ||
|
||
def carbon_offset(trees): | ||
carbon_per_tree = 22 | ||
total_offset = trees * carbon_per_tree | ||
return total_offset | ||
|
||
def visualize_results(tree_capacity, oxygen_output_val, tree_species): | ||
labels = ['Trees', 'Oxygen Output (kg)'] | ||
values = [tree_capacity, oxygen_output_val] | ||
|
||
x = np.arange(len(labels)) | ||
width = 0.35 | ||
|
||
fig, ax = plt.subplots() | ||
rects1 = ax.bar(x - width/2, values, width, label='Values') | ||
|
||
ax.set_ylabel('Count / Output') | ||
ax.set_title('Tree Capacity and Oxygen Output') | ||
ax.set_xticks(x) | ||
ax.set_xticklabels(labels) | ||
ax.legend() | ||
|
||
for rect in rects1: | ||
height = rect.get_height() | ||
ax.annotate('{}'.format(height), | ||
xy=(rect.get_x() + rect.get_width() / 2, height), | ||
xytext=(0, 3), | ||
textcoords="offset points", | ||
ha='center', va='bottom') | ||
|
||
plt.show() | ||
|
||
def analyze_area_for_tree(area_name, area_km2, tree_species): | ||
lat, lon = get_location_coordinates(area_name) | ||
if lat is None or lon is None: | ||
return | ||
|
||
map_file = interactive_map(lat, lon, area_name) | ||
|
||
tree_capacity = trees_capacity(area_km2, tree_species) | ||
oxygen_output_val = oxygen_output(tree_capacity, tree_species) | ||
carbon_offset_val = carbon_offset(tree_capacity) | ||
suitable_trees = planting_recommendations(area_name) | ||
|
||
print(f"For the area of {area_km2} km² in {area_name}: ") | ||
print(f"Estimated number of {tree_species} trees that can be planted: {tree_capacity}") | ||
print(f"Estimated annual oxygen output: {oxygen_output_val} kg") | ||
print(f"Estimated carbon offset: {carbon_offset_val} kg/year") | ||
print(f"View the interactive map here: {map_file}") | ||
print(f"Recommended tree species for planting: {', '.join(suitable_trees)}") | ||
|
||
visualize_results(tree_capacity, oxygen_output_val, tree_species) | ||
|
||
if __name__ == "__main__": | ||
area_name = input("Enter the name of the city/Area Name: ") | ||
area_km2 = float(input("Enter the area in km²: ")) | ||
tree_species = input("Enter the tree species (e.g. Oak, Pine, Maple, Cedar, Cherry etc): ") | ||
analyze_area_for_tree(area_name, area_km2, tree_species) |