Skip to content

Deep Neural Network and other ML algorithms are developed to predict damage and oil outflow in tanker collision accidents https://doi.org/10.1177/14750902211039659

License

Notifications You must be signed in to change notification settings

tanmoyie/Deep-Neural-Network

Repository files navigation

Deep-Neural-Network to predict damage and spill size

Situation

In strategic planning of oil spill, it is crucial to understand what could be the spill size given incident properties, and most current engineering models rely on physical simulation to get spill size of individual spill incidents.

This project aims to predict spill size based on oil spill incidents, and since it is using machine learning based models, it is faster than its counterparts.

Task

to predict damage and oil outflow in tanker collision accidents

Action

(i) Deep Neural Network, (ii) Gradient Boosted Regression Tree and (iii) Polynomial Regression based models are developed and trained on simulated accident data based on Monte Carlo Simulation

Result

The proposed DNN is highly accurate and computationally efficient.

JP1 workflow

About

Deep Neural Network and other ML algorithms are developed to predict damage and oil outflow in tanker collision accidents https://doi.org/10.1177/14750902211039659

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published