Skip to content

Commit

Permalink
updating
Browse files Browse the repository at this point in the history
  • Loading branch information
teepeemm committed Nov 21, 2024
1 parent 44155a3 commit 5fdb69b
Show file tree
Hide file tree
Showing 9 changed files with 51 additions and 35 deletions.
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@ Running `./make.py -n` will use latexml to make a complete website version of th
(Unfortunately, latexmk appears to be a little too agressive in ignoring compilation errors.
I recommend compiling using your regular method first, and once you know it compiles, then use latexmk.)

A solutions manual is available upon request.

This work is covered with a Creative Commons 4.0 By-NC copyright.

#### Rearrangements from ET
Expand Down
1 change: 1 addition & 0 deletions apexNotes.txt
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ III: F15.4.8 ?
9.8 p529: all series tests require positivity?
D11.4.1: Maybe give the box method for computing?
12.5 better arc length parameterization? Frenet frame?
F14.2.8: use axis equal image
C15: should 2d curl match 3d curl?
15.4: Green's Theorem on region with holes

Expand Down
47 changes: 28 additions & 19 deletions errata/Errata.tex
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,34 @@

\maketitle

\noindent
The following errors exist in the in June 2023 printed version of Apex LT Calculus I:
\begin{enumerate}
\item \S1.2 p18 Example 1.2.1: The solution requires $\epsilon<4$ in order for $\delta>0$.
\item \S3.3 p168\#25 solution: While the function is decreasing on $(-\infty,-2)$, $(-2,4)$, $(4,\infty)$; and this is the entirety of the domain; it is incorrect to say that the function is ``decreasing on [its] entire domain'' because it is not necessarily decreasing from one interval to another.
\label{2023-06-00I}
\end{enumerate}

\startMarkdownTable
\begin{table}[ht]
\caption{Errata Tally (``+'' indicates systemic errata)}
\begin{tabular}{lccc}\toprule
Version & Calculus I & Calculus II & Calculus III \\\midrule
\errorrow{2023-06-00} \\
\errorrow{2021-06-00} \\
\errorrow{2019-06-00} \\
\errorrow{2018-07-13} \\
\errorrow{2017-11-13} \\
\errorrow{2017-07-27} \\
\errorrow{2017-05-00} \\
\errorrow{2017-01-00} \\
\errorrow{2016-08-00} \\
\midrule
\errorTotals \\
\bottomrule
\end{tabular}
\end{table}

\noindent
The following errors exist in the in June 2021 printed version of Apex LT Calculus I:
\begin{enumerate}
Expand Down Expand Up @@ -147,25 +175,6 @@
\label{2021-06-00III}
\end{enumerate}

\startMarkdownTable
\begin{table}[ht]
\caption{Errata Tally (``+'' indicates systemic errata)}
\begin{tabular}{lccc}\toprule
Version & Calculus I & Calculus II & Calculus III \\\midrule
\errorrow{2021-06-00} \\
\errorrow{2019-06-00} \\
\errorrow{2018-07-13} \\
\errorrow{2017-11-13} \\
\errorrow{2017-07-27} \\
\errorrow{2017-05-00} \\
\errorrow{2017-01-00} \\
\errorrow{2016-08-00} \\
\midrule
\errorTotals \\
\bottomrule
\end{tabular}
\end{table}

\noindent
The following errors exist in the in June 2019 printed version of Apex LT Calculus I:
\begin{enumerate}
Expand Down
3 changes: 2 additions & 1 deletion errata/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ If you are interested in a particular error, you can look through [Errata.tex](E

Version | Calculus I | Calculus II | Calculuc III
---|---|---|---
2023-06-00|2||
2021-06-00|2|30|10
2019-06-00|6+|7|22
2018-07-13|47|56+|13+
Expand All @@ -14,7 +15,7 @@ Version | Calculus I | Calculus II | Calculuc III
2017-01-00|9+|19+|
2016-08-00|19+||
---|---|---|---
Total|94+|146+|103+
Total|96+|146+|103+

"+" indicates a systemic error.
(The totals for a row may be higher than what's listed in [changes.md](../changes.md) due to double counting.)
2 changes: 1 addition & 1 deletion exercises/03-03-exset-02.tex
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@

\exercise{$\ds f(x) =\frac{x}{x^2-2x-8}$}{domain=$(-\infty,-2)\cup(-2,4)\cup(4,\infty)$;\\
no c.p.;\\
decreasing on entire domain, $(-\infty,-2)$; $(-2,4)$; $(4,\infty)$.}
decreasing on $(-\infty,-2)$; $(-2,4)$; $(4,\infty)$.}

\exercise{$\ds f(x) =\frac{(x-2)^{2/3}}{x}$}{domain=$(-\infty,0)\cup(0,\infty)$;\\
c.p. at $c=2,6$;\\
Expand Down
17 changes: 9 additions & 8 deletions slurm-apex.sh
Original file line number Diff line number Diff line change
Expand Up @@ -53,10 +53,10 @@ latexmlscripts="$HOME/git/LaTeXML/blib/script"
singularitydir="$HOME/latexml"
printf '\\newcommand{\\thetitle}{Calculus}\n\\printincolor\n\\usethreeDgraphics\n\\renewcommand{\\monthYear}{June 2023}\n' > options.tex

#singularity exec $singularitydir/latexml.sif $latexmlscripts/latexml \
# --destination=$base.xml \
# --nocomments \
# $base
singularity exec $singularitydir/latexml.sif $latexmlscripts/latexml \
--destination=$base.xml \
--nocomments \
$base

exit_code=$?

Expand All @@ -69,10 +69,10 @@ if [ "$exit_code" -ne "0" ]; then
exit "$exit_code"
fi

#singularity exec $singularitydir/latexml.sif $latexmlscripts/latexmlpost \
# --split \
# --destination=web/index.html \
# $base.xml
singularity exec $singularitydir/latexml.sif $latexmlscripts/latexmlpost \
--split \
--destination=web/index.html \
$base.xml

exit_code=$?

Expand All @@ -91,6 +91,7 @@ singularity exec $singularitydir/latexml.sif $latexmlscripts/latexmlc \
--split \
--timeout=36000 \
--css=style-narrow.css \
--stylesheet=apexepub.xsl \
$base

exit_code=$?
Expand Down
8 changes: 4 additions & 4 deletions standalone.tex
Original file line number Diff line number Diff line change
Expand Up @@ -25,13 +25,13 @@

%\clearpage

\setcounter{chapter}{10}
\setcounter{chapter}{1}

\setcounter{section}{4}
\setcounter{section}{1}

\setcounter{figure}{6}
%\setcounter{figure}{6}

\input{text/09_Polar_Intro}
\input{text/01_Limit_Definition}

%%\printexercises{exercises/14-03-exercises}
%
Expand Down
4 changes: 3 additions & 1 deletion text/01_Limit_Definition.tex
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,9 @@ \section{Epsilon-Delta Definition of a Limit}\label{sec:limit_def}
\end{align*}

The ``desired form'' in the last step is ``$-\textit{something} < x-4 < \textit{something}$.''
Since we want this last interval to describe an $x$ tolerance around 4, we have that either $\delta \leq 4\epsilon - \epsilon^2$ or $\delta \leq 4\epsilon + \epsilon^2$, whichever is smaller: \[\delta \leq \min\{4\epsilon - \epsilon^2, 4\epsilon + \epsilon^2\}\text{.}\] Since $\epsilon > 0$, the minimum is $\delta \leq 4\epsilon - \epsilon^2$. That's the formula: given an $\epsilon$, set $\delta \leq 4\epsilon-\epsilon^2$.
Since we want this last interval to describe an $x$ tolerance around 4, we have that either $\delta \leq 4\epsilon - \epsilon^2$ or $\delta \leq 4\epsilon + \epsilon^2$, whichever is smaller:
\[\delta \leq \min\{4\epsilon - \epsilon^2, 4\epsilon + \epsilon^2\}\text{.}\]
Since $\epsilon > 0$, the minimum is $\delta \leq 4\epsilon - \epsilon^2$. That's the formula: given an $\epsilon$, set $\delta \leq 4\epsilon-\epsilon^2$. (We also need $\epsilon<4$ so that $\delta>0$. But there's no problem assuming $\epsilon$ is smaller than what we were given.)

We can check this for our previous values. If $\epsilon=0.5$, the formula gives
$\delta \leq 4(0.5) - (0.5)^2 = 1.75$ and when $\epsilon=0.01$, the formula gives $\delta \leq 4(0.01) - (0.01)^2 = 0.399$.
Expand Down
2 changes: 1 addition & 1 deletion text/04_NewtonsMethod.tex
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ \section{Newton's Method}\label{sec:newton}
x_4 &= 1.48579 - \frac{f(1.48579)}{\fp(1.48579)} \approx 1.46596,\\
x_5 &= 1.46596 - \frac{f(1.46596)}{\fp(1.46596)} \approx 1.46557
\end{flalign*}
We performed 5 iterations of Newton's Method to find a root accurate to the first 3 places after the decimal; our final approximation is $1.465.$ The exact value of the root, to six decimal places, is $1.465571$; It turns out that our $x_5$ is accurate to more than just 3 decimal places.
We performed 5 iterations of Newton's Method to find a root accurate to the first 3 places after the decimal; our final approximation is $1.465.$ The exact value of the root, to six decimal places, is $1.465571$; it turns out that our $x_5$ is accurate to more than just 3 decimal places.

\mtable{A graph of $f(x) = x^3-x^2-1$ in \autoref{ex_newt2}.}{fig:newt2}{\begin{tikzpicture}
\begin{axis}[width=\marginparwidth,tick label style={font=\scriptsize},
Expand Down

0 comments on commit 5fdb69b

Please sign in to comment.