-
Notifications
You must be signed in to change notification settings - Fork 105
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#0: Provide an example of hybrid TP/DP using all-gather w/ line topo
- Loading branch information
Showing
1 changed file
with
93 additions
and
0 deletions.
There are no files selected for viewing
93 changes: 93 additions & 0 deletions
93
tests/ttnn/distributed/test_hybrid_data_tensor_parallel_example_T3000.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
|
||
import ttnn | ||
import torch | ||
import transformers | ||
import pytest | ||
|
||
from tests.ttnn.utils_for_testing import assert_with_pcc | ||
from ttnn.model_preprocessing import preprocess_model_parameters | ||
|
||
CLUSTER_AXIS_X = 1 | ||
|
||
class TtFalconMLP: | ||
def __init__(self, parameters, mesh_device): | ||
super().__init__() | ||
self.mesh_device = mesh_device | ||
self.dense_h_to_4h_weights = parameters.dense_h_to_4h.weight | ||
self.dense_4h_to_h_weights = parameters.dense_4h_to_h.weight | ||
|
||
def __call__(self, x: ttnn.Tensor) -> ttnn.Tensor: | ||
ff1_linear: ttnn.Tensor = ttnn.linear(x, self.dense_h_to_4h_weights) | ||
gelu = ttnn.gelu(ff1_linear) | ||
|
||
# Effectively invokes CCL Line All Gather for every row of the mesh | ||
gelu = ttnn.all_gather( | ||
gelu, | ||
dim=-1, | ||
num_links=1, | ||
cluster_axis=CLUSTER_AXIS_X, | ||
mesh_device=self.mesh_device, | ||
topology=ttnn.Topology.Linear, | ||
) | ||
|
||
ff2_linear: ttnn.Tensor = ttnn.linear(gelu, self.dense_4h_to_h_weights) | ||
|
||
return ff2_linear | ||
|
||
|
||
def test_tensor_parallel_falcon_mlp(): | ||
if ttnn.get_num_devices() < 8: | ||
pytest.skip() | ||
|
||
mesh_device = ttnn.open_mesh_device( | ||
ttnn.MeshShape(2, 4), | ||
) | ||
mesh_device.enable_async(True) | ||
|
||
# Set PyTorch seed for reproducibility | ||
torch.manual_seed(0) | ||
|
||
# Load Falcon MLP model from huggingface | ||
config = transformers.FalconConfig.from_pretrained("tiiuae/falcon-7b-instruct") | ||
model = transformers.models.falcon.modeling_falcon.FalconMLP(config).eval() | ||
|
||
# Initialize hidden states | ||
batch_size, sequence_length = 2, 256 | ||
torch_hidden_states = (torch.rand(batch_size, 1, sequence_length, config.hidden_size, dtype=torch.float32) * 2) - 1 | ||
torch_output = model.forward(torch_hidden_states) | ||
|
||
# DP = 2; shard activations on batch-dim: [2,1,sequence_length,hidden_size] and replicate along columns of the mesh | ||
# [A0, A0, A0, A0] | ||
# [A1, A1, A1, A1] | ||
hidden_states, parameters = None, None | ||
mesh_shape = tuple(mesh_device.shape) | ||
|
||
with ttnn.distribute(ttnn.ShardTensor2dMesh(mesh_device, mesh_shape=mesh_shape, dims=(0, None))): | ||
hidden_states = ttnn.from_torch( | ||
torch_hidden_states, | ||
dtype=ttnn.bfloat16, | ||
layout=ttnn.TILE_LAYOUT, | ||
device=mesh_device, | ||
) | ||
|
||
# TP = 4; ctx manager replicate model weights along rows of the mesh and shards replicas on columns of the mesh | ||
# [W0, W1, W2, W3] | ||
# [W0, W1, W2, W3] | ||
with ttnn.distribute(ttnn.ShardTensor2dMesh(mesh_device, mesh_shape=mesh_shape, dims=(None, -1))): | ||
parameters = ttnn.model_preprocessing.preprocess_model_parameters( | ||
initialize_model=lambda: model, | ||
device=mesh_device, | ||
) | ||
|
||
# Initialize Model | ||
ttnn_model = TtFalconMLP(parameters, mesh_device) | ||
|
||
# Run Model | ||
ttnn_output = ttnn_model(hidden_states) | ||
|
||
with ttnn.distribute(ttnn.ConcatMesh2dToTensor(mesh_device, mesh_shape=(2, 4), dims=(0, -1))): | ||
assert_with_pcc(torch_output, ttnn.to_torch(ttnn_output), 0.98) |