-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgos.py
435 lines (317 loc) · 13.8 KB
/
algos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from queue import PriorityQueue
from collections import deque
from maze import *
''''''''''''''''''''''''
full_polygons: list[list[int]] = []
def swap(a, b):
return b, a
def DFS(g: SearchSpace, sc: pygame.Surface, start: Node, goal: Node):
print('Implement DFS algorithm')
# The set which contains the nodes that could be visited
open_set = [start.id]
# The set which contains the visited nodes
closed_set = []
# father[x] = y means that you can go to node y from x. It would help you on
# tracing the path when you reach the goal
father = [-1] * g.get_length()
# Save the previous node of the current one - optimize the BLUE coloring stage
previous_node = start
# Repeat until goal is found or list of nodes that could be visited is empty
while open_set:
current_node_id = open_set.pop()
current_node = g.grid_cells[current_node_id]
# Push current node into visited nodes list
closed_set.append(current_node_id)
# Set the color of the visited nodes - BLUE
# previous_node.set_color(BLUE, sc)
if g.is_target(current_node, goal):
break
# Set color for current node - YELLOW
# current_node.set_color(YELLOW, sc)
for neighbor in g.get_neighbors(current_node):
neighbor_id = neighbor.id
if neighbor_id not in closed_set and neighbor_id not in open_set:
open_set.append(neighbor_id)
father[neighbor_id] = current_node_id
# Set color for all nodes that could be visited - RED
# neighbor.set_color(RED, sc)
# Save current node to color it BLUE in the next while loop
previous_node = current_node
# Manual adjust animation speed
# set_animation_speed()
# Update start and goal node
start.set_color(ORANGE, sc)
goal.set_color(PURPLE, sc)
font = pygame.font.Font(None, 24)
text = font.render("S", True, WHITE)
sc.blit(text, text.get_rect(center=start.rect.center).topleft)
text = font.render("G", True, WHITE)
sc.blit(text, text.get_rect(center=goal.rect.center).topleft)
# Trace back the path from the goal node to the start node
path = []
current_node_id = goal.id
while current_node_id != -1:
path.append(current_node_id)
current_node_id = father[current_node_id]
path.reverse()
# Draw the path with '+' symbols
for i in range(1, len(path) - 1):
node = g.grid_cells[path[i]]
font = pygame.font.Font(None, 24)
text = font.render(PATH_MARK, True, BLACK)
sc.blit(text, text.get_rect(center=node.rect.center).topleft)
set_animation_speed()
''''''''''''''''''''''''
# Using double-ended-queue
def BFS(g: SearchSpace, sc: pygame.Surface, start: Node, goal: Node):
print('Implement BFS algorithm')
# The set which contains the nodes that could be visited
open_set = deque([start.id])
# The set which contains the visited nodes
closed_set = set()
# father[x] = y means that you can go to node y from x. It would help you on
# tracing the path when you reach the goal
father = [-1] * g.get_length()
# Save the previous node of the current one - optimize the BLUE coloring stage
previous_node = start
while open_set:
current_node_id = open_set.popleft() # Sử dụng popleft() thay vì pop(0)
current_node = g.grid_cells[current_node_id]
if current_node_id in closed_set:
continue
# Push current node into visited nodes set
closed_set.add(current_node_id)
# Set the color of the visited nodes - BLUE
# previous_node.set_color(BLUE, sc)
if g.is_target(current_node, goal):
break
# Set color for current node - YELLOW
# current_node.set_color(YELLOW, sc)
for neighbor in g.get_neighbors(current_node):
neighbor_id = neighbor.id
if neighbor_id not in closed_set and neighbor_id not in open_set:
open_set.append(neighbor_id)
father[neighbor_id] = current_node_id
# Set color for all nodes that could be visited - RED
# neighbor.set_color(RED, sc)
# Save current node to color it BLUE in the next while loop
previous_node = current_node
# Manual adjust animation speed
# set_animation_speed()
# Update start and goal node
start.set_color(ORANGE, sc)
goal.set_color(PURPLE, sc)
font = pygame.font.Font(None, 24)
text = font.render("S", True, WHITE)
sc.blit(text, text.get_rect(center=start.rect.center).topleft)
text = font.render("G", True, WHITE)
sc.blit(text, text.get_rect(center=goal.rect.center).topleft)
# Trace back the path from the goal node to the start node
path = []
current_node_id = goal.id
while current_node_id != -1:
path.append(current_node_id)
current_node_id = father[current_node_id]
path.reverse()
# Draw the path with '+' symbols
for i in range(1, len(path) - 1):
node = g.grid_cells[path[i]]
font = pygame.font.Font(None, 24)
text = font.render(PATH_MARK, True, BLACK)
sc.blit(text, text.get_rect(center=node.rect.center).topleft)
set_animation_speed()
''''''''''''''''''''''''
def UCS(g: SearchSpace, sc: pygame.Surface, start: Node, goal: Node):
print('Implement UCS algorithm')
# The set which contains the nodes that could be visited
open_set = PriorityQueue()
# Set the root node with a sum cost of 0
open_set.put((0, start.id))
# The set which contains the visited nodes
closed_set = set()
# father[x] = y means that you can go to node y from x. It would help you on
# tracing the path when you reach the goal
father = [-1] * g.get_length()
cost = [float('inf')] * g.get_length()
cost[start.id] = 0
# Save the previous node of the current one - optimize the BLUE coloring stage
previous_node = start
while not open_set.empty():
current_cost, current_node_id = open_set.get()
if current_node_id in closed_set:
continue
current_node = g.grid_cells[current_node_id]
closed_set.add(current_node_id)
# Set the color of the visited nodes - BLUE
# previous_node.set_color(BLUE, sc)
# if g.is_target(current_node):
# break
for neighbor in g.get_neighbors(current_node):
neighbor_id = neighbor.id
new_cost = cost[current_node_id] + neighbor.cost # Sử dụng thuộc tính "chi phí"
if new_cost < cost[neighbor_id]:
cost[neighbor_id] = new_cost
father[neighbor_id] = current_node_id
open_set.put((new_cost, neighbor_id))
# Set color of nodes that can be visited - RED
# neighbor.set_color(RED, sc)
# Save current node to color it BLUE in the next while loop
previous_node = current_node
# Manual adjust animation speed
# set_animation_speed()
# Update start and goal node
start.set_color(ORANGE, sc)
goal.set_color(PURPLE, sc)
font = pygame.font.Font(None, 24)
text = font.render("S", True, WHITE)
sc.blit(text, text.get_rect(center=start.rect.center).topleft)
text = font.render("G", True, WHITE)
sc.blit(text, text.get_rect(center=goal.rect.center).topleft)
# Trace back the path from the goal node to the start node
path = []
current_node_id = goal.id
while current_node_id != -1:
path.append(current_node_id)
current_node_id = father[current_node_id]
path.reverse()
# Draw the path with '+' symbols
for i in range(1, len(path) - 1):
node = g.grid_cells[path[i]]
font = pygame.font.Font(None, 24)
text = font.render(PATH_MARK, True, BLACK)
sc.blit(text, text.get_rect(center=node.rect.center).topleft)
set_animation_speed()
''''''''''''''''''''''''
def AStar(g: SearchSpace, sc: pygame.Surface, start: Node, goal: Node):
print('Implement AStar algorithm')
# The set which contains the nodes that could be visited
open_set = PriorityQueue()
# Set the root node with a sum cost of 0
open_set.put((0, start.id))
# The set which contains the visited nodes
closed_set = set()
# father[x] = y means that you can go to node y from x. It would help you on
# tracing the path when you reach the goal
father = [-1] * g.get_length()
cost = [float('inf')] * g.get_length()
cost[start.id] = 0
# Save the previous node of the current one - optimize the BLUE coloring stage
previous_node = start
while not open_set.empty():
current_cost, current_node_id = open_set.get()
if current_node_id in closed_set:
continue
current_node = g.grid_cells[current_node_id]
closed_set.add(current_node_id)
# Set the color of the visited nodes - BLUE
# previous_node.set_color(BLUE, sc)
if g.is_target(current_node, goal):
break
# Set color for current node - YELLOW
# current_node.set_color(YELLOW, sc)
for neighbor in g.get_neighbors(current_node):
neighbor_id = neighbor.id
new_cost = cost[current_node_id] + neighbor.cost # Sử dụng thuộc tính "chi phí"
if new_cost < cost[neighbor_id]:
cost[neighbor_id] = new_cost
father[neighbor_id] = current_node_id
# Estimate the remaining cost using a heuristic (e.g., Manhattan distance to the goal)
remaining_cost = heuristic("Diagonal", neighbor, goal)
total_cost = new_cost + remaining_cost
open_set.put((total_cost, neighbor_id))
# Set color of nodes that can be visited - RED
# neighbor.set_color(RED, sc)
# Save current node to color it BLUE in the next while loop
previous_node = current_node
# Manual adjust animation speed
# set_animation_speed()
# Update start and goal node
start.set_color(ORANGE, sc)
goal.set_color(PURPLE, sc)
font = pygame.font.Font(None, 24)
text = font.render("S", True, WHITE)
sc.blit(text, text.get_rect(center=start.rect.center).topleft)
text = font.render("G", True, WHITE)
sc.blit(text, text.get_rect(center=goal.rect.center).topleft)
# Trace back the path from the goal node to the start node
path = []
current_node_id = goal.id
while current_node_id != -1:
path.append(current_node_id)
current_node_id = father[current_node_id]
path.reverse()
# Draw the path with '+' symbols
for i in range(1, len(path) - 1):
node = g.grid_cells[path[i]]
font = pygame.font.Font(None, 24)
text = font.render(PATH_MARK, True, BLACK)
sc.blit(text, text.get_rect(center=node.rect.center).topleft)
set_animation_speed()
# implemented for A*
def heuristic(name, start, goal):
if name == "Manhattan":
# Manhattan Distance
dx = start.rect.centerx - goal.rect.centerx
dy = start.rect.centery - goal.rect.centery
return abs(dx) + abs(dy)
elif name == "Chebyshev":
# Chebyshev Distance
dx = start.rect.centerx - goal.rect.centerx
dy = start.rect.centery - goal.rect.centery
return max(abs(dx), abs(dy))
elif name == "Diagonal":
# Diagonal Distance
dx = start.rect.centerx - goal.rect.centerx
dy = start.rect.centery - goal.rect.centery
return D * (abs(dx) + abs(dy)) + (D2 - 2 * D) * min(dx, dy)
def AStarForPolygon(g: SearchSpace, sc: pygame.Surface, polygon: list[int], start: Node, goal: Node):
# The set which contains the nodes that could be visited
open_set = PriorityQueue()
# Set the root node with a sum cost of 0
open_set.put((0, start.id))
# The set which contains the visited nodes
closed_set = set()
# father[x] = y means that you can go to node y from x. It would help you on
# tracing the path when you reach the goal
father = [-1] * g.get_length()
cost = [float('inf')] * g.get_length()
cost[start.id] = 0
while not open_set.empty():
current_cost, current_node_id = open_set.get()
if current_node_id in closed_set:
continue
current_node = g.grid_cells[current_node_id]
closed_set.add(current_node_id)
if g.is_target(current_node, goal):
break
for neighbor in g.get_neighbors_for_polygon(current_node):
neighbor_id = neighbor.id
new_cost = cost[current_node_id] + neighbor.cost # Sử dụng thuộc tính "chi phí"
if new_cost < cost[neighbor_id]:
cost[neighbor_id] = new_cost
father[neighbor_id] = current_node_id
# Estimate the remaining cost using a heuristic (e.g., Manhattan distance to the goal)
remaining_cost = heuristic("Diagonal", neighbor, goal)
total_cost = new_cost + remaining_cost
open_set.put((total_cost, neighbor_id))
# Manual adjust animation speed
# set_animation_speed()
# Trace back the path from the goal node to the start node
path = []
current_node_id = goal.id
while current_node_id != -1:
path.append(current_node_id)
current_node_id = father[current_node_id]
path.reverse()
# Draw the path by color them BLACK
for i in range(len(path) - 1):
end_node = g.grid_cells[path[i + 1]]
end_node.is_brick = True
end_node.set_color(BLACK, sc)
# set_animation_speed()
# update current polygon's node, except for initial ones
if i != len(path) - 2:
polygon.append(end_node.id)
# Recolor start and goal node
start.set_color(GREEN, sc)
goal.set_color(GREEN, sc)