Skip to content

简单无向图的不同构个数计算,主要定理为Burnside引理。Calculation of simple undirected non-isomorphic graphs based on Burnside's lemma.

License

Notifications You must be signed in to change notification settings

thinszx/Calculation-of-Simple-Undirected-Non-Isomorphic-Graphs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Calculation-of-Simple-Undirected-Non-Isomorphic-Graphs

信安数基大作业,闲来无事发到gtihub上

Term project of my Mathematical Foundations in Information Security course. Uploading this code because I'm trying to archive all my projects on GitHub from now on and this project is a flag.

原理/Theory

  1. 计算 $n$ 元对称群 $S_n$ 的阶,即为 $|S_n|=n!$

  2. 进行和式分解,如

$$ \begin{aligned} 4 &=1+1+1+1 \\\ &=2+1+1 \\\ &=2+2 \\\ &=3+1 \\\ \end{aligned} $$

计算每种置换类型的个数,对 $n$ 次对称群 $S_n$,有

$$\phi(g)=\frac{n !}{1^{\lambda_{1}} \cdot \lambda_{1} ! \cdot 2^{\lambda_{2}} \cdot \lambda_{2} ! \cdots n^{\lambda_{n}} \cdot \lambda_{n} !}$$

其中,$\phi(g) = |(1)^{\lambda_1} (2)^{\lambda_2} \cdots (n)^{\lambda_n}|$

  1. 利用Burnside公式求解

$$N = \frac{1}{n!}\sum_{g \in S_n} {\frac{n!}{1^{\lambda_1} \cdot \lambda_1! \cdot 2^{\lambda_2} \cdot \lambda_2! \cdots n^{\lambda_n} \cdot \lambda_n!} \cdot 2^{N_g}}$$

其中, $N_{g}=\frac{1}{o(g)} \sum\limits_{k=1}^{o(g)}\left(C_{\lambda_{k_1}}^{2}+\lambda_{k_2}\right)$,$g^k$ 的类型为 $1^{k_1}2^{k_2} \cdots n^{k_n}$$o(g)$$g$ 的阶

注:若 $\lambda_{k_1} < 2$,${C^2_{\lambda_{k_1}}}$ 取 $0$

About

简单无向图的不同构个数计算,主要定理为Burnside引理。Calculation of simple undirected non-isomorphic graphs based on Burnside's lemma.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages