-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
one additional test to check whether the surrogate CMA-ES really invo…
…kes the model
- Loading branch information
1 parent
c2cb15d
commit 6cbc99a
Showing
1 changed file
with
98 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
"""Test the model equations.""" | ||
|
||
|
||
from typing import Final | ||
|
||
import numpy as np | ||
from moptipy.api.execution import Execution | ||
from numpy.random import Generator, default_rng | ||
|
||
import moptipyapps.dynamic_control.model_objective as mo | ||
from moptipyapps.dynamic_control.experiment_surrogate import make_instances | ||
from moptipyapps.dynamic_control.objective import ( | ||
FigureOfMerit, | ||
FigureOfMeritLE, | ||
) | ||
from moptipyapps.dynamic_control.surrogate_cma import SurrogateCmaEs | ||
from moptipyapps.dynamic_control.system_model import SystemModel | ||
|
||
|
||
def test_surrogate_cmaes() -> None: | ||
"""Test whether surrogate cmaes really invokes the model.""" | ||
old: Final = mo._evaluate | ||
mo._evaluate = old.py_func | ||
random: Final[Generator] = default_rng() | ||
|
||
model_counter: Final[np.ndarray] = np.array([0], int) | ||
real_count: Final[np.ndarray] = np.array([0], int) | ||
|
||
instance: SystemModel = next(iter(make_instances()))() | ||
|
||
n_ode_steps_on_raw_model_per_training_case: Final[int] = ( | ||
int(random.integers(10, 20))) | ||
setattr(instance.system, "training_steps", | ||
n_ode_steps_on_raw_model_per_training_case) | ||
|
||
n_training_cases: Final[int] = int(random.integers(1, 3)) | ||
setattr(instance.system, "training_starting_states", | ||
np.array(instance.system.training_starting_states[ | ||
0:n_training_cases])) | ||
|
||
def __model(_: np.ndarray, __: float, ___: np.ndarray, out: np.ndarray, | ||
cnt=model_counter) -> None: | ||
cnt[0] += 1 | ||
out.fill(-4.0) | ||
|
||
def __equations(_: np.ndarray, __: float, ___: np.ndarray, out: np.ndarray, | ||
cnt=real_count) -> None: | ||
cnt[0] += 1 | ||
out.fill(5.0) | ||
|
||
setattr(instance.system, "equations", __equations) | ||
setattr(instance.model, "controller", __model) | ||
|
||
objective: Final[FigureOfMerit] = FigureOfMeritLE(instance, True) | ||
rsm: Final = objective.set_model | ||
|
||
def __sm(eq, _rsm=rsm) -> None: | ||
if hasattr(eq, "py_func"): | ||
eq = eq.py_func | ||
_rsm(eq) | ||
|
||
objective.set_model = __sm | ||
|
||
space = instance.controller.parameter_space() | ||
|
||
n_total_fes: Final[int] = int(random.integers(5, 10)) | ||
n_warmup_fes: Final[int] = int(random.integers(2, n_total_fes - 2)) | ||
|
||
n_fes_for_model_training: Final[int] = int(random.integers(4, 10)) | ||
n_fes_for_controller_synthesis_on_model: Final[int] = int(random.integers( | ||
4, 10)) | ||
|
||
with Execution().set_max_fes(n_total_fes)\ | ||
.set_objective(objective).set_solution_space(space)\ | ||
.set_solution_space(space)\ | ||
.set_algorithm(SurrogateCmaEs( | ||
instance, space, objective, n_warmup_fes, | ||
n_fes_for_model_training, | ||
n_fes_for_controller_synthesis_on_model)).execute(): | ||
pass | ||
|
||
n_real_ode_steps: Final[int] = ( | ||
n_total_fes * n_training_cases | ||
* n_ode_steps_on_raw_model_per_training_case) | ||
assert real_count >= n_real_ode_steps | ||
|
||
n_training_invocations: int = 0 | ||
for i in range(n_warmup_fes, n_total_fes): | ||
data_set_size: int = i * n_training_cases * ( | ||
n_ode_steps_on_raw_model_per_training_case - 1) | ||
n_training_invocations += n_fes_for_model_training * data_set_size | ||
|
||
n_model_ode_steps: Final[int] = ( | ||
(n_total_fes - n_warmup_fes) | ||
* n_training_cases * n_ode_steps_on_raw_model_per_training_case) | ||
assert model_counter >= n_training_invocations + n_model_ode_steps | ||
|
||
mo._evaluate = old |