Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Expand grouping variables for bootstrap intervals #465

Merged
merged 9 commits into from
Sep 12, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: rsample
Title: General Resampling Infrastructure
Version: 1.2.0.9000
Version: 1.2.0.9001
Authors@R: c(
person("Hannah", "Frick", , "[email protected]", role = c("aut", "cre"),
comment = c(ORCID = "0000-0002-6049-5258")),
Expand Down
87 changes: 54 additions & 33 deletions R/bootci.R
Original file line number Diff line number Diff line change
Expand Up @@ -67,41 +67,46 @@ check_tidy <- function(x, std_col = FALSE) {
if (std_col) {
std_candidates <- colnames(x) %in% std_exp
std_candidates <- colnames(x)[std_candidates]
re_name <- list(std_err = std_candidates)
if (has_id) {
x <-
dplyr::select(x, term, estimate, id, tidyselect::one_of(std_candidates)) %>%
mutate(id = (id == "Apparent")) %>%
setNames(c("term", "estimate", "orig", "std_err"))
dplyr::select(x, term, estimate, id, tidyselect::one_of(std_candidates),
dplyr::starts_with(".")) %>%
mutate(orig = (id == "Apparent")) %>%
dplyr::rename(!!!re_name)
} else {
x <-
dplyr::select(x, term, estimate, tidyselect::one_of(std_candidates)) %>%
setNames(c("term", "estimate", "std_err"))
dplyr::select(x, term, estimate, tidyselect::one_of(std_candidates),
dplyr::starts_with(".")) %>%
dplyr::rename(!!!re_name)
}
} else {
if (has_id) {
x <-
dplyr::select(x, term, estimate, id) %>%
dplyr::select(x, term, estimate, id, dplyr::starts_with(".")) %>%
mutate(orig = (id == "Apparent")) %>%
dplyr::select(-id)
} else {
x <- dplyr::select(x, term, estimate)
x <- dplyr::select(x, term, estimate, dplyr::starts_with("."))
}
}

x
}


get_p0 <- function(x, alpha = 0.05) {
get_p0 <- function(x, alpha = 0.05, groups) {
group_sym <- rlang::syms(groups)

orig <- x %>%
group_by(term) %>%
group_by(!!!group_sym) %>%
dplyr::filter(orig) %>%
dplyr::select(term, theta_0 = estimate) %>%
dplyr::select(!!!group_sym, theta_0 = estimate) %>%
ungroup()
x %>%
dplyr::filter(!orig) %>%
inner_join(orig, by = "term") %>%
group_by(term) %>%
inner_join(orig, by = groups) %>%
group_by(!!!group_sym) %>%
summarize(p0 = mean(estimate <= theta_0, na.rm = TRUE)) %>%
mutate(
Z0 = stats::qnorm(p0),
Expand Down Expand Up @@ -181,9 +186,10 @@ pctl_single <- function(stats, alpha = 0.05) {
#' @param statistics An unquoted column name or `dplyr` selector that identifies
#' a single column in the data set containing the individual bootstrap
#' estimates. This must be a list column of tidy tibbles (with columns
#' `term` and `estimate`). For t-intervals, a
#' standard tidy column (usually called `std.err`) is required.
#' See the examples below.
#' `term` and `estimate`). Optionally, users can include columns whose names
#' begin with a period and the intervals will be created for each combination
#' of these variables and the `term` column. For t-intervals, a standard tidy
#' column (usually called `std.err`) is required. See the examples below.
topepo marked this conversation as resolved.
Show resolved Hide resolved
#' @param alpha Level of significance.
#' @param .fn A function to calculate statistic of interest. The
#' function should take an `rsplit` as the first argument and the `...` are
Expand Down Expand Up @@ -216,6 +222,8 @@ pctl_single <- function(stats, alpha = 0.05) {
#' library(purrr)
#' library(tibble)
#'
#' # ------------------------------------------------------------------------------
#'
#' lm_est <- function(split, ...) {
#' lm(mpg ~ disp + hp, data = analysis(split)) %>%
#' tidy()
Expand All @@ -230,6 +238,8 @@ pctl_single <- function(stats, alpha = 0.05) {
#' int_t(car_rs, results)
#' int_bca(car_rs, results, .fn = lm_est)
#'
#' # ------------------------------------------------------------------------------
#'
#' # putting results into a tidy format
#' rank_corr <- function(split) {
#' dat <- analysis(split)
Expand Down Expand Up @@ -272,8 +282,11 @@ int_pctl.bootstraps <- function(.data, statistics, alpha = 0.05, ...) {

check_num_resamples(stats, B = 1000)

stat_groups <- c("term", grep("^\\.", names(stats), value = TRUE))
stat_groups <- rlang::syms(stat_groups)

vals <- stats %>%
dplyr::group_by(term) %>%
dplyr::group_by(!!!stat_groups) %>%
dplyr::do(pctl_single(.$estimate, alpha = alpha)) %>%
dplyr::ungroup()
vals
Expand Down Expand Up @@ -351,9 +364,10 @@ int_t.bootstraps <- function(.data, statistics, alpha = 0.05, ...) {

check_num_resamples(stats, B = 500)

vals <-
stats %>%
dplyr::group_by(term) %>%
stat_groups <- c("term", grep("^\\.", names(stats), value = TRUE))
stat_groups <- rlang::syms(stat_groups)
vals <- stats %>%
dplyr::group_by(!!!stat_groups) %>%
dplyr::do(t_single(.$estimate, .$std_err, .$orig, alpha = alpha)) %>%
dplyr::ungroup()
vals
Expand All @@ -369,8 +383,11 @@ bca_calc <- function(stats, orig_data, alpha = 0.05, .fn, ...) {
rlang::abort("All statistics have missing values.")
}

stat_groups_chr <- c("term", grep("^\\.", names(stats), value = TRUE))
stat_groups_sym <- rlang::syms(stat_groups_chr)

### Estimating Z0 bias-correction
bias_corr_stats <- get_p0(stats, alpha = alpha)
bias_corr_stats <- get_p0(stats, alpha = alpha, groups = stat_groups_chr)

# need the original data frame here
loo_rs <- loo_cv(orig_data)
Expand All @@ -388,16 +405,16 @@ bca_calc <- function(stats, orig_data, alpha = 0.05, .fn, ...) {

loo_estimate <-
loo_res %>%
dplyr::group_by(term) %>%
dplyr::group_by(!!!stat_groups_sym) %>%
dplyr::summarize(loo = mean(estimate, na.rm = TRUE)) %>%
dplyr::inner_join(loo_res, by = "term", multiple = "all") %>%
dplyr::group_by(term) %>%
dplyr::inner_join(loo_res, by = stat_groups_chr, multiple = "all") %>%
dplyr::group_by(!!!stat_groups_sym) %>%
dplyr::summarize(
cubed = sum((loo - estimate)^3),
squared = sum((loo - estimate)^2)
) %>%
dplyr::ungroup() %>%
dplyr::inner_join(bias_corr_stats, by = "term") %>%
dplyr::inner_join(bias_corr_stats, by = stat_groups_chr) %>%
dplyr::mutate(
a = cubed / (6 * (squared^(3 / 2))),
Zu = (Z0 + Za) / (1 - a * (Z0 + Za)) + Z0,
Expand All @@ -408,21 +425,25 @@ bca_calc <- function(stats, orig_data, alpha = 0.05, .fn, ...) {

terms <- loo_estimate$term
stats <- stats %>% dplyr::filter(!orig)
for (i in seq_along(terms)) {
tmp <- new_stats(stats$estimate[stats$term == terms[i]],
lo = loo_estimate$lo[i],
hi = loo_estimate$hi[i]
)
tmp$term <- terms[i]

keys <- stats %>% dplyr::distinct(!!!stat_groups_sym)
for (i in 1:nrow(keys)) {
tmp_stats <- dplyr::inner_join(stats, keys[i,], by = stat_groups_chr)
tmp_loo <- dplyr::inner_join(loo_estimate, keys[i,], by = stat_groups_chr)

tmp <- new_stats(tmp_stats$estimate,
lo = tmp_loo$lo,
hi = tmp_loo$hi)
tmp <- dplyr::bind_cols(tmp, keys[i,])
if (i == 1) {
ci_bca <- tmp
} else {
ci_bca <- bind_rows(ci_bca, tmp)
ci_bca <- dplyr::bind_rows(ci_bca, tmp)
}
}
ci_bca <-
ci_bca %>%
dplyr::select(term, .lower, .estimate, .upper) %>%
dplyr::select(!!!stat_groups_sym, .lower, .estimate, .upper) %>%
dplyr::mutate(
.alpha = alpha,
.method = "BCa"
Expand All @@ -449,7 +470,7 @@ int_bca.bootstraps <- function(.data, statistics, alpha = 0.05, .fn, ...) {
if (length(column_name) != 1) {
rlang::abort(stat_fmt_err)
}
stats <- .data %>% dplyr::select(!!column_name, id)
stats <- .data %>% dplyr::select(!!column_name, id, dplyr::starts_with("."))
stats <- check_tidy(stats)

check_num_resamples(stats, B = 1000)
Expand Down
11 changes: 8 additions & 3 deletions man/int_pctl.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading