forked from autowarefoundation/autoware.universe
-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(intersection): rectify initial accel/velocity profile in ego vel…
…ocity profile (autowarefoundation#5496) Signed-off-by: Mamoru Sobue <[email protected]>
- Loading branch information
1 parent
e233f47
commit 374dee3
Showing
6 changed files
with
482 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
290 changes: 290 additions & 0 deletions
290
planning/behavior_velocity_intersection_module/scripts/ttc.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,290 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright 2023 TIER IV, Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
from dataclasses import dataclass | ||
from itertools import cycle | ||
import math | ||
from threading import Lock | ||
import time | ||
|
||
import imageio | ||
import matplotlib | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import rclpy | ||
from rclpy.node import Node | ||
from tier4_debug_msgs.msg import Float64MultiArrayStamped | ||
|
||
matplotlib.use("TKAgg") | ||
|
||
|
||
@dataclass | ||
class NPC: | ||
x: float | ||
y: float | ||
th: float | ||
width: float | ||
height: float | ||
speed: float | ||
dangerous: bool | ||
ref_object_enter_time: float | ||
ref_object_exit_time: float | ||
collision_start_time: float | ||
collision_start_dist: float | ||
collision_end_time: float | ||
collision_end_dist: float | ||
pred_x: list[float] | ||
pred_y: list[float] | ||
|
||
def __init__(self, data: list[float]): | ||
self.x = data[0] | ||
self.y = data[1] | ||
self.th = data[2] | ||
self.width = data[3] | ||
self.height = data[4] | ||
self.speed = data[5] | ||
self.dangerous = bool(int(data[6])) | ||
self.ref_object_enter_time = data[7] | ||
self.ref_object_exit_time = data[8] | ||
self.collision_start_time = data[9] | ||
self.collision_start_dist = data[10] | ||
self.collision_end_time = data[11] | ||
self.collision_end_dist = data[12] | ||
self.first_collision_x = data[13] | ||
self.first_collision_y = data[14] | ||
self.last_collision_x = data[15] | ||
self.last_collision_y = data[16] | ||
self.pred_x = data[17:58:2] | ||
self.pred_y = data[18:58:2] | ||
|
||
|
||
class TTCVisualizer(Node): | ||
def __init__(self, args): | ||
super().__init__("ttc_visualizer") | ||
self.ttc_dist_pub = self.create_subscription( | ||
Float64MultiArrayStamped, | ||
"/planning/scenario_planning/lane_driving/behavior_planning/behavior_velocity_planner/debug/intersection/ego_ttc", | ||
self.on_ego_ttc, | ||
1, | ||
) | ||
self.ttc_time_pub = self.create_subscription( | ||
Float64MultiArrayStamped, | ||
"/planning/scenario_planning/lane_driving/behavior_planning/behavior_velocity_planner/debug/intersection/object_ttc", | ||
self.on_object_ttc, | ||
1, | ||
) | ||
self.args = args | ||
self.lane_id = args.lane_id | ||
self.ego_ttc_data = None | ||
self.object_ttc_data = None | ||
self.npc_vehicles = [] | ||
self.images = [] | ||
self.last_sub = time.time() | ||
|
||
self.plot_timer = self.create_timer(0.2, self.on_plot_timer) | ||
self.fig = plt.figure(figsize=(13, 6)) | ||
self.ttc_ax = self.fig.add_subplot(1, 2, 1) | ||
self.ttc_vel_ax = self.ttc_ax.twinx() | ||
self.world_ax = self.fig.add_subplot(1, 2, 2) | ||
self.lock = Lock() | ||
self.color_list = [ | ||
"#e41a1c", | ||
"#377eb8", | ||
"#4daf4a", | ||
"#984ea3", | ||
"#ff7f00", | ||
"#ffff33", | ||
"#a65628", | ||
"#f781bf", | ||
] | ||
plt.ion() | ||
plt.show(block=False) | ||
|
||
def plot_ttc(self): | ||
self.ttc_ax.cla() | ||
self.ttc_vel_ax.cla() | ||
|
||
n_ttc_data = int(self.ego_ttc_data.layout.dim[1].size) | ||
ego_ttc_time = self.ego_ttc_data.data[n_ttc_data : 2 * n_ttc_data] | ||
ego_ttc_dist = self.ego_ttc_data.data[2 * n_ttc_data : 3 * n_ttc_data] | ||
|
||
self.ttc_ax.grid() | ||
self.ttc_ax.set_xlabel("ego time") | ||
self.ttc_ax.set_ylabel("ego dist") | ||
time_dist_plot = self.ttc_ax.plot(ego_ttc_time, ego_ttc_dist, label="time-dist", c="orange") | ||
self.ttc_ax.set_xlim( | ||
min(ego_ttc_time) - 2.0, | ||
min(max(ego_ttc_time) + 3.0, self.args.max_time), | ||
) | ||
# self.ttc_ax.set_ylim(min(ego_ttc_dist) - 2.0, max(ego_ttc_dist) + 3.0) | ||
for npc, color in zip(self.npc_vehicles, cycle(self.color_list)): | ||
t0, t1 = npc.collision_start_time, npc.collision_end_time | ||
d0, d1 = npc.collision_start_dist, npc.collision_end_dist | ||
self.ttc_ax.fill( | ||
[t0, t0, t1, t1, 0, 0], | ||
[d0, 0, 0, d1, d1, d0], | ||
c=color, | ||
alpha=0.2, | ||
) | ||
dd = [d1 - d0 for d0, d1 in zip(ego_ttc_dist, ego_ttc_dist[1:])] | ||
dt = [t1 - t0 for t0, t1 in zip(ego_ttc_time, ego_ttc_time[1:])] | ||
v = [d / t for d, t in zip(dd, dt)] | ||
self.ttc_vel_ax.yaxis.set_label_position("right") | ||
self.ttc_vel_ax.set_ylabel("ego velocity") | ||
# self.ttc_vel_ax.set_ylim(0.0, max(v) + 1.0) | ||
time_velocity_plot = self.ttc_vel_ax.plot(ego_ttc_time[1:], v, label="time-v", c="red") | ||
lines = time_dist_plot + time_velocity_plot | ||
labels = [line.get_label() for line in lines] | ||
self.ttc_ax.legend(lines, labels, loc="upper left") | ||
|
||
def plot_world(self): | ||
detect_range = self.args.range | ||
self.world_ax.cla() | ||
n_ttc_data = int(self.ego_ttc_data.layout.dim[1].size) | ||
ego_path_x = self.ego_ttc_data.data[3 * n_ttc_data : 4 * n_ttc_data] | ||
ego_path_y = self.ego_ttc_data.data[4 * n_ttc_data : 5 * n_ttc_data] | ||
self.world_ax.set_aspect("equal") | ||
self.world_ax.scatter(ego_path_x[0], ego_path_y[0], marker="x", c="red", s=15) | ||
min_x, max_x = min(ego_path_x), max(ego_path_x) | ||
min_y, max_y = min(ego_path_y), max(ego_path_y) | ||
x_dir = 1 if ego_path_x[-1] > ego_path_x[0] else -1 | ||
y_dir = 1 if ego_path_y[-1] > ego_path_y[0] else -1 | ||
min_x = min_x - detect_range if x_dir == 1 else min_x - 20 | ||
max_x = max_x + detect_range if x_dir == -1 else max_x + 20 | ||
min_y = min_y - detect_range if y_dir == 1 else min_y - 20 | ||
max_y = max_y + detect_range if y_dir == -1 else max_y + 20 | ||
self.world_ax.set_xlim(min_x, max_x) | ||
self.world_ax.set_ylim(min_y, max_y) | ||
arrows = [ | ||
(x0, y0, math.atan2(x1 - x0, y1 - y0)) | ||
for (x0, y0, x1, y1) in zip( | ||
ego_path_x[0:-1:5], | ||
ego_path_y[0:-1:5], | ||
ego_path_x[4:-1:5], | ||
ego_path_y[4:-1:5], | ||
) | ||
] | ||
for x, y, th in arrows: | ||
self.world_ax.arrow( | ||
x, | ||
y, | ||
math.sin(th) * 0.5, | ||
math.cos(th) * 0.5, | ||
head_width=0.1, | ||
head_length=0.1, | ||
) | ||
|
||
for npc, color in zip(self.npc_vehicles, cycle(self.color_list)): | ||
x, y, th, w, h = npc.x, npc.y, npc.th, npc.width, npc.height | ||
bbox = np.array( | ||
[ | ||
[-w / 2, -h / 2], | ||
[+w / 2, -h / 2], | ||
[+w / 2, +h / 2], | ||
[-w / 2, +h / 2], | ||
[-w / 2, -h / 2], | ||
] | ||
).transpose() | ||
Rth = np.array([[math.cos(th), -math.sin(th)], [math.sin(th), math.cos(th)]]) | ||
bbox_rot = Rth @ bbox | ||
self.world_ax.fill(bbox_rot[0, :] + x, bbox_rot[1, :] + y, color, alpha=0.5) | ||
self.world_ax.plot( | ||
[npc.first_collision_x, npc.last_collision_x], | ||
[npc.first_collision_y, npc.last_collision_y], | ||
c=color, | ||
linewidth=3.0, | ||
) | ||
if npc.dangerous: | ||
self.world_ax.plot(npc.pred_x, npc.pred_y, c=color, linewidth=1.5) | ||
else: | ||
self.world_ax.plot(npc.pred_x, npc.pred_y, c=color, linestyle="--") | ||
|
||
self.world_ax.plot(ego_path_x, ego_path_y, c="k", linestyle="--") | ||
|
||
def cleanup(self): | ||
if self.args.save: | ||
kwargs_write = {"fps": self.args.fps, "quantizer": "nq"} | ||
imageio.mimsave("./" + self.args.gif + ".gif", self.images, **kwargs_write) | ||
Check warning on line 221 in planning/behavior_velocity_intersection_module/scripts/ttc.py GitHub Actions / spell-check-differential
|
||
rclpy.shutdown() | ||
|
||
def on_plot_timer(self): | ||
with self.lock: | ||
if (not self.ego_ttc_data) or (not self.object_ttc_data): | ||
return | ||
|
||
if not self.last_sub: | ||
return | ||
|
||
now = time.time() | ||
if (now - self.last_sub) > 1.0: | ||
print("elapsed more than 1sec from last sub, exit/save fig") | ||
self.cleanup() | ||
|
||
self.plot_ttc() | ||
self.plot_world() | ||
self.fig.canvas.flush_events() | ||
|
||
if self.args.save: | ||
image = np.frombuffer(self.fig.canvas.tostring_rgb(), dtype="uint8") | ||
image = image.reshape(self.fig.canvas.get_width_height()[::-1] + (3,)) | ||
self.images.append(image) | ||
|
||
def on_ego_ttc(self, msg): | ||
with self.lock: | ||
if int(msg.data[0]) == self.lane_id: | ||
self.ego_ttc_data = msg | ||
self.last_sub = time.time() | ||
|
||
def parse_npc_vehicles(self): | ||
self.npc_vehicles = [] | ||
n_npc_vehicles = int(self.object_ttc_data.layout.dim[0].size) | ||
npc_data_size = int(self.object_ttc_data.layout.dim[1].size) | ||
for i in range(1, n_npc_vehicles): | ||
data = self.object_ttc_data.data[i * npc_data_size : (i + 1) * npc_data_size] | ||
self.npc_vehicles.append(NPC(data)) | ||
|
||
def on_object_ttc(self, msg): | ||
with self.lock: | ||
if int(msg.data[0]) == self.lane_id: | ||
self.object_ttc_data = msg | ||
self.parse_npc_vehicles() | ||
self.last_sub = time.time() | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--lane_id", | ||
type=int, | ||
required=True, | ||
help="lane_id to analyze", | ||
) | ||
parser.add_argument( | ||
"--range", | ||
type=float, | ||
default=60, | ||
help="detect range for drawing", | ||
) | ||
parser.add_argument("--max_time", type=float, default=100, help="max plot limit for time") | ||
parser.add_argument("-s", "--save", action="store_true", help="flag to save gif") | ||
parser.add_argument("--gif", type=str, default="ttc", help="filename of gif file") | ||
parser.add_argument("--fps", type=float, default=5, help="fps of gif") | ||
args = parser.parse_args() | ||
|
||
rclpy.init() | ||
visualizer = TTCVisualizer(args) | ||
rclpy.spin(visualizer) |
Oops, something went wrong.