Interactive Algorithm Visualizer for Python
py_visual_algo
is a Python library designed for visualizing and understanding algorithms, including sorting, searching, graph traversal, and evolutionary algorithms. Using real-time visualizations and step-by-step animations, it transforms complex algorithmic concepts into intuitive, interactive experiences. Perfect for educators, students, and developers, py_visual_algo
bridges the gap between theoretical concepts and practical implementation.
-
Real-Time Visualizations
Watch algorithms execute in real-time with live updates and insights. -
Step-by-Step Animations
Follow every decision, iteration, and operation of an algorithm. -
Graph Integration
Leveragenetworkx
to visualize and work with graph-based algorithms. -
Evolutionary Algorithms
Explore optimization problems with cutting-edge techniques like genetic algorithms, particle swarm optimization, and more. -
Extensive Algorithm Coverage
Includes a wide range of algorithms such as:- Sorting: Bubble Sort, Quick Sort, Merge Sort.
- Searching: Linear Search, Binary Search, Jump Search.
- Graph Algorithms: BFS, DFS, Dijkstra, A*.
- Evolutionary Algorithms: Genetic Algorithm, Particle Swarm Optimization, Ant Colony Optimization.
-
Customizable API
Tailor algorithm visualizations, themes, and execution parameters to fit your unique requirements. -
Educational Focus
Designed for teaching, learning, and presentations, making it the ideal tool for instructors and students.
Whether you're an educator aiming to simplify algorithmic concepts, a student trying to grasp algorithms interactively, or a developer experimenting with optimization techniques, py_visual_algo
is your go-to solution.
bubble_sort(data)
- Bubble Sortmerge_sort(data)
- Merge Sortquick_sort(data)
- Quick Sortinsertion_sort(data)
- Insertion Sortselection_sort(data)
- Selection Sortheap_sort(data)
- Heap Sortradix_sort(data)
- Radix Sortcounting_sort(data)
- Counting Sortbucket_sort(data)
- Bucket Sortshell_sort(data)
- Shell Sort
linear_search(data, target)
- Linear Searchbinary_search(data, target)
- Binary Searchjump_search(data, target)
- Jump Searchexponential_search(data, target)
- Exponential Searchinterpolation_search(data, target)
- Interpolation Search
bfs(graph, start)
- Breadth-First Search (BFS)dfs(graph, start)
- Depth-First Search (DFS)bfs_with_edges(graph, start)
- BFS with Edge Visualizationdfs_with_edges(graph, start)
- DFS with Edge Visualizationdijkstra(graph, start)
- Dijkstra's Algorithma_star(graph, start, goal, heuristic)
- A* Algorithmbellman_ford(graph, start)
- Bellman-Ford Algorithmprim(graph, start)
- Prim's Algorithm (Minimum Spanning Tree)kruskal(graph)
- Kruskal's Algorithm (Minimum Spanning Tree)floyd_warshall(graph)
- Floyd-Warshall Algorithmtopological_sort(graph)
- Topological Sorting
inorder_traversal(root)
- Inorder Traversalpreorder_traversal(root)
- Preorder Traversalpostorder_traversal(root)
- Postorder Traversallevel_order_traversal(root)
- Level Order Traversal (BFS for Trees)
genetic_algorithm(...)
- Genetic Algorithmsimulated_annealing(...)
- Simulated Annealingparticle_swarm_optimization(...)
- Particle Swarm Optimization (PSO)differential_evolution(...)
- Differential Evolutionant_colony_optimization(...)
- Ant Colony Optimization (ACO)memetic_algorithm(...)
- Memetic Algorithmartificial_bee_colony(...)
- Artificial Bee Colony Optimization (ABC)harmony_search(...)
- Harmony Searchcultural_algorithm(...)
- Cultural Algorithmtabu_search(...)
- Tabu Search
- Real-Time Visualizations: Step-by-step execution for better understanding.
- Graph Integration: Supports visualization of graph-based algorithms using
networkx
. - Customizable API: Adapt algorithm execution and visualizations to your needs.
- Educational Focus: Ideal for teaching and learning.
This comprehensive set of algorithms makes py_visual_algo
a versatile library for various applications, including education, research, and development.
pip install py-visual-algo
Example of visualizing Bubble Sort:
from py_visual_algo.algorithms.sorting import bubble_sort
from py_visual_algo.visualizer.plotter import plot_sorting
data = [10, 3, 7, 2, 5]
generator = bubble_sort(data)
plot_sorting(generator)
The py_visual_algo
library includes a variety of examples to demonstrate its capabilities. These examples are located in the examples/
directory.
- Clone the repository:
git clone https://github.com/tirotir-ir/py_visual_algo.git
cd py_visual_algo
- Navigate to the examples/ directory:
cd examples
3. Run an example script:
python sorting1.py
- Sorting Algorithms: Demonstrates sorting algorithms like Bubble Sort, Merge Sort, and Quick Sort. bubble_sort1.py
- Searching Algorithms: Shows Linear Search, Binary Search, and Jump Search. linear_search.py
- Graph Algorithms: Visualizes BFS, DFS, Dijkstra, and A* algorithms. graph1.py
- Tree Traversals: Explores Inorder, Preorder, and Postorder traversals. tree_traversal1.py
- Optimization Algorithms: Demonstrates Particle Swarm Optimization, Ant Colony Optimization, and more. ant_colony_optimization.py
examples/ ├── sorting/ │ ├── bubble_sort1.py │ ├── bubble_sort2.py │ ├── quick_sort.py │ ├── merge_sort.py │ ├── sorting1.py │ └── sorting2.py ├── searching/ │ ├── linear_search.py │ ├── binary_search.py │ ├── jump_search.py │ └── searching1.py ├── graph_algorithms/ │ ├── a_star1.py │ ├── bellman_ford.py │ ├── bfs1.py │ ├── bfs_with_edges.py │ ├── dfs1.py │ ├── dfs_with_edges.py │ ├── dijkstra1.py │ ├── dijkstra2.py │ ├── graph1.py │ ├── graph2.py │ └── graph3.py ├── tree_algorithms/ │ ├── inorder_traversal.py │ ├── postorder_traversal.py │ ├── preorder_traversal.py │ ├── tree_traversal1.py │ └── tree_traversal2.py ├── evolutionary_algorithms/ │ ├── ant_colony_optimization.py │ ├── artificial_bee_colony.py │ ├── cultural_algorithm.py │ ├── differential_evolution.py │ ├── genetic_algorithm.py │ ├── harmony_search.py │ ├── memetic_algorithm.py │ ├── pso_example.py │ ├── simulated_annealing.py │ └── evolutionary1.py └── pathfinding/ ├── pathfinding1.py └── pathfinding2.py
The py_visual_algo
library includes a user-friendly Graphical User Interface (GUI) to browse and run examples interactively. Follow these steps to use the GUI:
Activate your virtual environment to use the installed library:
-
On Windows:
<virtual_env_root>\Scripts\activate
-
Example:
python -m venv env env\Scripts\activate
-
On macOS/Linux:
source <virtual_env_root>/bin/activate
If the library is not already installed in the virtual environment, install it using pip:
pip install py_visual_algo
Ensure the examples folder is either included in the installed package or downloaded separately there (see Step 3).
The examples
folder must be located two levels above the GUI script (gui.py
). If the library is installed in a virtual environment, place the examples
folder under:
<virtual_env_root>/Lib/site-packages/examples
For example, in a typical virtual environment, the directory structure should look like this:
<virtual_env_root>/
├── Lib/
│ ├── site-packages/
│ │ ├── py_visual_algo/
│ │ │ ├── ui/
│ │ │ │ └── gui.py
│ │ ├── examples/
│ │ │ ├── bfs1.py
│ │ │ ├── bubble_sort1.py
│ │ │ └── ...
Move the examples
folder to the correct location by running:
move <path_to_downloaded_examples> <virtual_env_root>/Lib/site-packages/
Once the directory structure is correct and the virtual environment is active, run the GUI:
python -m py_visual_algo.ui.gui
When the GUI launches:
- It will dynamically load available examples from the
examples
folder. - Select an example from the list displayed in the GUI.
- Click Run Example to execute it.
Ensure the examples
folder contains valid Python files (e.g., bfs1.py
, bubble_sort1.py
). The output or visualization will appear after the example runs successfully.
If you prefer to run examples individually without using the GUI, follow these steps:
The examples
folder contains Python scripts for various algorithms. Ensure the examples
folder is downloaded and placed in the correct location:
<virtual_env_root>/Lib/site-packages/examples
Navigate to the examples
folder and execute any example script directly. For example:
-
Run BFS Example:
python <virtual_env_root>/Lib/site-packages/examples/bfs1.py
-
Run Bubble Sort Example:
python <virtual_env_root>/Lib/site-packages/examples/bubble_sort1.py
Replace <virtual_env_root>
with the path to your virtual environment.
-
No Examples Displayed in the GUI:
- Verify the
examples
folder is in the correct location (<virtual_env_root>/Lib/site-packages/examples
). - Confirm the
examples
folder contains.py
files.
- Verify the
-
Virtual Environment Not Activated:
- Ensure the virtual environment is activated before running the GUI or examples.
By following these steps, you can explore and run the library's examples interactively or individually.
See CONTRIBUTING.md for guidelines.
This project is licensed under the MIT License. See the LICENSE file for details.