-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6280766
commit 0e7c15e
Showing
1 changed file
with
147 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
import warnings | ||
from contextlib import contextmanager | ||
from copy import copy | ||
from pathlib import Path | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from scipy.integrate import solve_ivp | ||
from scipy.linalg import LinAlgWarning | ||
from sklearn.exceptions import ConvergenceWarning | ||
from sklearn.linear_model import Lasso | ||
import pickle | ||
import dill | ||
import pysindy as ps | ||
|
||
from utils import * | ||
|
||
# Seed the random number generators for reproducibility | ||
#np.random.seed(100) | ||
|
||
# Set up simulation parameters | ||
time_horzn = 1.0 | ||
dt = 0.01 | ||
ang_ind = [2] # theta_ | ||
|
||
# Initialize integrator keywords for solve_ivp to replicate the odeint defaults | ||
integrator_keywords = {} | ||
integrator_keywords["rtol"] = 1e-9 | ||
integrator_keywords["method"] = "LSODA" | ||
integrator_keywords["atol"] = 1e-9 | ||
|
||
# Randomized initial condition | ||
def x0_fun(): return [0.0, 0.0, np.random.uniform(-np.pi, np.pi)] | ||
|
||
# Range of the amplitudes and frequencies of the randomized sine inputs | ||
u_amp_range = [0, np.pi] | ||
u_freq_range = [0, 5] | ||
|
||
# Model parameter | ||
v = 1.0 | ||
|
||
def dubins_car_dyn(state, u): | ||
# x_dot = f(x, u) | ||
|
||
x_, y_, theta_ = state | ||
|
||
x_dot = v * np.cos(theta_) | ||
y_dot = v * np.sin(theta_) | ||
theta_dot = u | ||
|
||
return [x_dot, y_dot, theta_dot] | ||
|
||
def dubins_car(t, state, u_fun): | ||
u = u_fun(t) | ||
return dubins_car_dyn(state, u) | ||
|
||
## Train a SINDYc model using trajectory data | ||
# Generate the training dataset | ||
t_data = np.arange(0, time_horzn, dt) | ||
t_data_span = (t_data[0], t_data[-1]) | ||
n_traj_train = 5000 | ||
|
||
x_train, x_dot_train, u_train = gen_trajectory_dataset(dubins_car, x0_fun, n_traj_train, time_horzn, dt, | ||
u_amp_range, u_freq_range, ang_ind, **integrator_keywords) | ||
|
||
#plt.plot(t_data, x_train[0]) | ||
#plt.show() | ||
#plt.plot(t_data, x_train[0][:,1], t_data, x_dot_train[0][:,0]) | ||
#plt.show() | ||
#plt.plot(t_data, x_train[0][:,3], t_data, x_dot_train[0][:,2]) | ||
#plt.show() | ||
#plt.plot(t_data, u_train[0]) | ||
#plt.show() | ||
|
||
# Instantiate and fit the SINDYc model | ||
# Generalized Library (such that it's control affine) | ||
generalized_library = ps.GeneralizedLibrary( | ||
[ps.PolynomialLibrary(degree = 20), | ||
#ps.FourierLibrary(n_frequencies = 1), | ||
ps.IdentityLibrary() # for control input | ||
], | ||
#tensor_array = [[0,1,0]], | ||
inputs_per_library = [[2], [3]] | ||
) | ||
|
||
# Unconstrained model | ||
model_uc = ps.SINDy( | ||
optimizer = ps.STLSQ(threshold = 0.0001), | ||
feature_library = generalized_library, | ||
) | ||
model_uc.fit(x_train, x_dot = x_dot_train, u = u_train, t = dt) | ||
model_uc.print() | ||
print("Feature names:\n", model_uc.get_feature_names()) | ||
|
||
model = model_uc | ||
|
||
control_affine = check_control_affine(model) | ||
assert control_affine is True | ||
|
||
## Assess results on a test trajectory | ||
# Evolve the equations in time using a different initial condition | ||
x0 = x0_fun() | ||
u_amp_data = np.random.uniform(0, 100) | ||
u_freq_data = np.random.uniform(0, 5) | ||
u_fun = lambda t: u_amp_data * np.sin(2 * np.pi * u_freq_data * t) | ||
test_model_prediction(dubins_car, model, x0, u_fun, time_horzn, dt, ang_ind, **integrator_keywords) | ||
u_amp_data = np.random.uniform(0, 100) | ||
u_freq_data = np.random.uniform(0, 5) | ||
test_model_prediction(dubins_car, model, x0, u_fun, time_horzn, dt, ang_ind, **integrator_keywords) | ||
u_amp_data = np.random.uniform(0, 100) | ||
u_freq_data = np.random.uniform(0, 5) | ||
test_model_prediction(dubins_car, model, x0, u_fun, time_horzn, dt, ang_ind, **integrator_keywords) | ||
|
||
## Compute conformal prediction quantile | ||
x_max = 10.0 | ||
y_max = 10.0 | ||
theta_max = np.pi | ||
|
||
x_range = np.array([ | ||
[-x_max, x_max], | ||
[-y_max, y_max], | ||
[-theta_max, theta_max] | ||
]) | ||
|
||
u_range = np.array([ | ||
[-np.pi, np.pi] | ||
]) | ||
|
||
alpha = 0.05 | ||
n_cal = 1000 | ||
n_val = 1000 | ||
norm = 2 | ||
|
||
quantile = get_conformal_prediction_quantile(dubins_car_dyn, model, x_range, u_range, | ||
n_cal, n_val, alpha, norm) | ||
|
||
# Save the quantile and alpha as paramters under the model | ||
model_error = {"alpha": alpha, "quantile": quantile, "norm": norm} | ||
model.model_error = model_error | ||
|
||
## Save the model and dataset | ||
with open('./control_affine_models/saved_models/model_dubins_car_sindy', 'wb') as file: | ||
dill.dump(model, file) | ||
|
||
# Testing | ||
with open('./control_affine_models/saved_models/' + 'model_dubins_car_sindy', 'rb') as file: | ||
model2 = dill.load(file) |