Skip to content

Lectures

Steve Harris edited this page May 11, 2016 · 11 revisions

Possible lecture titles

May 19 for 4 weeks

Lecture preparation schedule

  • May 19

    • Intro lecture
      • introduce how the workshop will work
        • etherpad as a collaborative tool
        • live coding
        • pair programming
        • sticky notes
        • join collaborative google sheet for feedback
    • R for newbies - (v1) Steve (v2)
  • May 26

    • Excel Hell - (v1) Ed (v2)
      • live coding / practical session tidying a dirty sheet
    • Getting data into R - (v1) Ahmed (v2) Ed
      • live coding importing the data
      • let's add googlesheets to this but not the reproducible angle yet
      • simple summary functoions in R for looking at your data
        • ls()
        • summary()
        • mean()
        • nrows()
        • ncols()
        • names()
  • June 2

    • Reproducible science - (v1) Danny (v2) Finn
      • back story - requirements for publications
      • teach the google sheets pipeline
      • using git in R studio??
    • Tidying data in R - (v1) Ahmed (v2) Steve
      • dplyr
      • tidyr
  • June 9

    • Data viz - (v1) Finn (v2) Danny ?do dataviz before stats because we want to emphasise the importance of looking at your data; therefore just focus on histograms/bar and scatter plots
      • inspect before testing concept so dataviz of distribution before ttest etc
      • ggplot2
    • Stats - (v1) Sundiya (v2)
      • choose your test diagram
      • simple tests
    • Revisit ggplot with all the nicer options for facetting, colour size
      • maybe get them to plot hrate and mortality with