Skip to content

A curated list of awesome Machine Learning frameworks, libraries and software.

License

Notifications You must be signed in to change notification settings

vengodelsur/awesome-machine-learning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Awesome Machine Learning Awesome

A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php.

If you want to contribute to this list (please do), send me a pull request or contact me @josephmisiti. Also, a listed repository should be deprecated if:

  • Repository's owner explicitly say that "this library is not maintained".
  • Not committed for long time (2~3 years).

Further resources:

  • For a list of free machine learning books available for download, go here.

  • For a list of (mostly) free machine learning courses available online, go here.

  • For a list of blogs and newsletters on data science and machine learning, go here.

  • For a list of free-to-attend meetups and local events, go here.

Table of Contents

Frameworks and Libraries

Tools

Credits

APL

General-Purpose Machine Learning

  • naive-apl - Naive Bayesian Classifier implementation in APL. [Deprecated]

C

General-Purpose Machine Learning

  • Darknet - Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.
  • Hybrid Recommender System - A hybrid recommender system based upon scikit-learn algorithms. [Deprecated]
  • neonrvm - neonrvm is an open source machine learning library based on RVM technique. It's written in C programming language and comes with Python programming language bindings.
  • Recommender - A C library for product recommendations/suggestions using collaborative filtering (CF).

Computer Vision

  • CCV - C-based/Cached/Core Computer Vision Library, A Modern Computer Vision Library.
  • VLFeat - VLFeat is an open and portable library of computer vision algorithms, which has Matlab toolbox.

C++

Computer Vision

  • DLib - DLib has C++ and Python interfaces for face detection and training general object detectors.
  • EBLearn - Eblearn is an object-oriented C++ library that implements various machine learning models [Deprecated]
  • OpenCV - OpenCV has C++, C, Python, Java and MATLAB interfaces and supports Windows, Linux, Android and Mac OS.
  • VIGRA - VIGRA is a generic cross-platform C++ computer vision and machine learning library for volumes of arbitrary dimensionality with Python bindings.

General-Purpose Machine Learning

  • BanditLib - A simple Multi-armed Bandit library. [Deprecated]
  • Caffe - A deep learning framework developed with cleanliness, readability, and speed in mind. [DEEP LEARNING]
  • CatBoost - General purpose gradient boosting on decision trees library with categorical features support out of the box. It is easy to install, contains fast inference implementation and supports CPU and GPU (even multi-GPU) computation.
  • CNTK - The Computational Network Toolkit (CNTK) by Microsoft Research, is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.
  • CUDA - This is a fast C++/CUDA implementation of convolutional [DEEP LEARNING]
  • DeepDetect - A machine learning API and server written in C++11. It makes state of the art machine learning easy to work with and integrate into existing applications.
  • Distributed Machine learning Tool Kit (DMTK) - A distributed machine learning (parameter server) framework by Microsoft. Enables training models on large data sets across multiple machines. Current tools bundled with it include: LightLDA and Distributed (Multisense) Word Embedding.
  • DLib - A suite of ML tools designed to be easy to imbed in other applications.
  • DSSTNE - A software library created by Amazon for training and deploying deep neural networks using GPUs which emphasizes speed and scale over experimental flexibility.
  • DyNet - A dynamic neural network library working well with networks that have dynamic structures that change for every training instance. Written in C++ with bindings in Python.
  • Feast - A feature store for the management, discovery, and access of machine learning features. Feast provides a consistent view of feature data for both model training and model serving.
  • Featuretools - A library for automated feature engineering. It excels at transforming transactional and relational datasets into feature matrices for machine learning using reusable feature engineering "primitives".
  • Fido - A highly-modular C++ machine learning library for embedded electronics and robotics.
  • igraph - General purpose graph library.
  • Intel(R) DAAL - A high performance software library developed by Intel and optimized for Intel's architectures. Library provides algorithmic building blocks for all stages of data analytics and allows to process data in batch, online and distributed modes.
  • libfm - A generic approach that allows to mimic most factorization models by feature engineering.
  • LightGBM - Microsoft's fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
  • LKYDeepNN - A header-only C++11 Neural Network library. Low dependency, native traditional chinese document.
  • MLDB - The Machine Learning Database is a database designed for machine learning. Send it commands over a RESTful API to store data, explore it using SQL, then train machine learning models and expose them as APIs.
  • mlpack - A scalable C++ machine learning library.
  • MXNet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.
  • Polyaxon - A platform for reproducible and scalable machine learning and deep learning.
  • proNet-core - A general-purpose network embedding framework: pair-wise representations optimization Network Edit.
  • PyCUDA - Python interface to CUDA
  • ROOT - A modular scientific software framework. It provides all the functionalities needed to deal with big data processing, statistical analysis, visualization and storage.
  • shark - A fast, modular, feature-rich open-source C++ machine learning library.
  • Shogun - The Shogun Machine Learning Toolbox.
  • skynet - A library for learning neural network, has C-interface, net set in JSON. Written in C++ with bindings in Python, C++ and C#.
  • sofia-ml - Suite of fast incremental algorithms.
  • Stan - A probabilistic programming language implementing full Bayesian statistical inference with Hamiltonian Monte Carlo sampling.
  • ThunderGBM - A fast library for GBDTs and Random Forests on GPUs.
  • ThunderSVM - A fast SVM library on GPUs and CPUs.
  • Timbl - A software package/C++ library implementing several memory-based learning algorithms, among which IB1-IG, an implementation of k-nearest neighbor classification, and IGTree, a decision-tree approximation of IB1-IG. Commonly used for NLP.
  • Vowpal Wabbit (VW) - A fast out-of-core learning system.
  • Warp-CTC - A fast parallel implementation of Connectionist Temporal Classification (CTC), on both CPU and GPU.
  • XGBoost - A parallelized optimized general purpose gradient boosting library.
  • xLearn - A high performance, easy-to-use, and scalable machine learning package, which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data, which is very common in Internet services such as online advertisement and recommender systems.

Natural Language Processing

  • BLLIP Parser - BLLIP Natural Language Parser (also known as the Charniak-Johnson parser).
  • colibri-core - C++ library, command line tools, and Python binding for extracting and working with basic linguistic constructions such as n-grams and skipgrams in a quick and memory-efficient way.
  • CRF++ - Open source implementation of Conditional Random Fields (CRFs) for segmenting/labeling sequential data & other Natural Language Processing tasks. [Deprecated]
  • CRFsuite - CRFsuite is an implementation of Conditional Random Fields (CRFs) for labeling sequential data. [Deprecated]
  • frog - Memory-based NLP suite developed for Dutch: PoS tagger, lemmatiser, dependency parser, NER, shallow parser, morphological analyzer.
  • libfolia - C++ library for the FoLiA format
  • MeTA - MeTA : ModErn Text Analysis is a C++ Data Sciences Toolkit that facilitates mining big text data.
  • MIT Information Extraction Toolkit - C, C++, and Python tools for named entity recognition and relation extraction
  • ucto - Unicode-aware regular-expression based tokenizer for various languages. Tool and C++ library. Supports FoLiA format.

Speech Recognition

  • Kaldi - Kaldi is a toolkit for speech recognition written in C++ and licensed under the Apache License v2.0. Kaldi is intended for use by speech recognition researchers.

Sequence Analysis

  • ToPS - This is an objected-oriented framework that facilitates the integration of probabilistic models for sequences over a user defined alphabet. [Deprecated]

Gesture Detection

  • grt - The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, C++ machine learning library designed for real-time gesture recognition.

Common Lisp

General-Purpose Machine Learning

  • cl-libsvm - Wrapper for the libsvm support vector machine library. [Deprecated]
  • cl-online-learning - Online learning algorithms (Perceptron, AROW, SCW, Logistic Regression).
  • cl-random-forest - Implementation of Random Forest in Common Lisp.
  • mgl-gpr - Evolutionary algorithms. [Deprecated]
  • mgl - Neural networks (boltzmann machines, feed-forward and recurrent nets), Gaussian Processes.

Clojure

Natural Language Processing

  • Clojure-openNLP - Natural Language Processing in Clojure (opennlp).
  • Infections-clj - Rails-like inflection library for Clojure and ClojureScript.

General-Purpose Machine Learning

  • Clj-ML - A machine learning library for Clojure built on top of Weka and friends. [Deprecated]
  • Clojush - The Push programming language and the PushGP genetic programming system implemented in Clojure.
  • clortex - General Machine Learning library using Numenta’s Cortical Learning Algorithm. [Deprecated]
  • comportex - Functionally composable Machine Learning library using Numenta’s Cortical Learning Algorithm. [Deprecated]
  • cortex - Neural networks, regression and feature learning in Clojure.
  • DL4CLJ - Clojure wrapper for Deeplearning4j.
  • Encog - Clojure wrapper for Encog (v3) (Machine-Learning framework that specializes in neural-nets). [Deprecated]
  • Fungp - A genetic programming library for Clojure. [Deprecated]
  • Infer - Inference and machine learning in Clojure. [Deprecated]
  • lambda-ml - Simple, concise implementations of machine learning techniques and utilities in Clojure.
  • Statistiker - Basic Machine Learning algorithms in Clojure. [Deprecated]
  • Touchstone - Clojure A/B testing library. [Deprecated]

Data Analysis / Data Visualization

  • Envision - Clojure Data Visualisation library, based on Statistiker and D3.
  • Incanter - Incanter is a Clojure-based, R-like platform for statistical computing and graphics.
  • PigPen - Map-Reduce for Clojure.

Crystal

General-Purpose Machine Learning

  • crystal-fann - FANN (Fast Artificial Neural Network) binding.
  • machine - Simple machine learning algorithm.

Elixir

General-Purpose Machine Learning

  • emel - A simple and functional machine learning library written in Elixir.
  • Simple Bayes - A Simple Bayes / Naive Bayes implementation in Elixir.

Natural Language Processing

  • Stemmer - An English (Porter2) stemming implementation in Elixir.

Erlang

General-Purpose Machine Learning

  • Disco - Map Reduce in Erlang. [Deprecated]
  • Yanni - ANN neural networks using Erlangs leightweight processes.

Go

Natural Language Processing

  • go-ngram - In-memory n-gram index with compression. [Deprecated]
  • go-porterstemmer - A native Go clean room implementation of the Porter Stemming algorithm. [Deprecated]
  • paicehusk - Golang implementation of the Paice/Husk Stemming Algorithm. [Deprecated]
  • sentences - Golang implementation of Punkt sentence tokenizer.
  • snowball - Snowball Stemmer for Go.
  • word-embedding - Word Embeddings: the full implementation of word2vec, GloVe in Go.

General-Purpose Machine Learning

  • bayesian - Naive Bayesian Classification for Golang. [Deprecated]
  • birdland - A recommendation library in Go.
  • Cloudforest - Ensembles of decision trees in Go/Golang. [Deprecated]
  • eaopt - An evolutionary optimization library.
  • go-dnn - Deep Neural Networks for Golang (powered by MXNet)
  • go-galib - Genetic Algorithms library written in Go / Golang. [Deprecated]
  • go-ml-transpiler - An open source Go transpiler for machine learning models.
  • go-ml - Linear / Logistic regression, Neural Networks, Collaborative Filtering and Gaussian Multivariate Distribution. [Deprecated]
  • go-mxnet-predictor - Go binding for MXNet c_predict_api to do inference with pre-trained model.
  • go-pr - Pattern recognition package in Go lang. [Deprecated]
  • gobrain - Neural Networks written in Go.
  • golearn - Machine learning for Go.
  • goml - Machine learning library written in pure Go.
  • GoNN - GoNN is an implementation of Neural Network in Go Language, which includes BPNN, RBF, PCN. [Deprecated]
  • gorgonia - Deep learning in Go.
  • leaves - A pure Go implementation of the prediction part of GBRTs, including XGBoost and LightGBM.
  • neat - Plug-and-play, parallel Go framework for NeuroEvolution of Augmenting Topologies (NEAT). [Deprecated]
  • therfoo - An embedded deep learning library for Go.

Spatial analysis and geometry

  • go-geom - Go library to handle geometries.
  • gogeo - Spherical geometry in Go.

Data Analysis / Data Visualization

  • globe - Globe wireframe visualization.
  • glot - Glot is a plotting library for Golang built on top of gnuplot.
  • go-graph - Graph library for Go/Golang language. [Deprecated]
  • gonum/graph - General-purpose graph library.
  • gonum/mat - A linear algebra package for Go.
  • gonum/optimize - Implementations of optimization algorithms.
  • gonum/plot - A plotting library.
  • gonum/stat - A statistics library.
  • gota - Dataframes.
  • RF - Random forests implementation in Go. [Deprecated]
  • SVGo - The Go Language library for SVG generation.

Computer vision

  • GoCV - Package for computer vision using OpenCV 4 and beyond.

Haskell

General-Purpose Machine Learning

  • DNNGraph - A DSL for deep neural networks. [Deprecated]
  • haskell-ml - Haskell implementations of various ML algorithms. [Deprecated]
  • HLearn - a suite of libraries for interpreting machine learning models according to their algebraic structure. [Deprecated]
  • hnn - Haskell Neural Network library.
  • hopfield-networks - Hopfield Networks for unsupervised learning in Haskell. [Deprecated]
  • LambdaNet - Configurable Neural Networks in Haskell. [Deprecated]

Java

Natural Language Processing

  • Apache cTAKES - Apache clinical Text Analysis and Knowledge Extraction System (cTAKES) is an open-source natural language processing system for information extraction from electronic medical record clinical free-text.
  • ClearTK - ClearTK provides a framework for developing statistical natural language processing (NLP) components in Java and is built on top of Apache UIMA. [Deprecated]
  • CogcompNLP - This project collects a number of core libraries for Natural Language Processing (NLP) developed in the University of Illinois' Cognitive Computation Group, for example illinois-core-utilities which provides a set of NLP-friendly data structures and a number of NLP-related utilities that support writing NLP applications, running experiments, etc, illinois-edison a library for feature extraction from illinois-core-utilities data structures and many other packages.
  • CoreNLP - Stanford CoreNLP provides a set of natural language analysis tools which can take raw English language text input and give the base forms of words.
  • Cortical.io - Retina: an API performing complex NLP operations (disambiguation, classification, streaming text filtering, etc...) as quickly and intuitively as the brain.
  • IRIS - Cortical.io's FREE NLP, Retina API Analysis Tool (written in JavaFX!) - See the Tutorial Video.
  • LingPipe - A tool kit for processing text using computational linguistics.
  • MALLET - A Java-based package for statistical natural language processing, document classification, clustering, topic modeling, information extraction, and other machine learning applications to text.
  • NLP4J - The NLP4J project provides software and resources for natural language processing. The project started at the Center for Computational Language and EducAtion Research, and is currently developed by the Center for Language and Information Research at Emory University. [Deprecated]
  • OpenNLP - a machine learning based toolkit for the processing of natural language text.
  • Stanford English Tokenizer - Stanford Phrasal is a state-of-the-art statistical phrase-based machine translation system, written in Java.
  • Stanford Name Entity Recognizer - Stanford NER is a Java implementation of a Named Entity Recognizer.
  • Stanford Parser - A natural language parser is a program that works out the grammatical structure of sentences.
  • Stanford Phrasal: A Phrase-Based Translation System
  • Stanford POS Tagger - A Part-Of-Speech Tagger (POS Tagger).
  • Stanford SPIED - Learning entities from unlabeled text starting with seed sets using patterns in an iterative fashion.
  • Stanford Temporal Tagger - SUTime is a library for recognizing and normalizing time expressions.
  • Stanford Tokens Regex - A tokenizer divides text into a sequence of tokens, which roughly correspond to "words".
  • Stanford Topic Modeling Toolbox - Topic modeling tools to social scientists and others who wish to perform analysis on datasets.
  • Stanford Word Segmenter - Tokenization of raw text is a standard pre-processing step for many NLP tasks.
  • Tregex, Tsurgeon and Semgrex - Tregex is a utility for matching patterns in trees, based on tree relationships and regular expression matches on nodes (the name is short for "tree regular expressions").
  • Twitter Text Java - A Java implementation of Twitter's text processing library.

General-Purpose Machine Learning

  • aerosolve - A machine learning library by Airbnb designed from the ground up to be human friendly.
  • AMIDST Toolbox - A Java Toolbox for Scalable Probabilistic Machine Learning.
  • Datumbox - Machine Learning framework for rapid development of Machine Learning and Statistical applications.
  • ELKI - Java toolkit for data mining. (unsupervised: clustering, outlier detection etc.)
  • Encog - An advanced neural network and machine learning framework. Encog contains classes to create a wide variety of networks, as well as support classes to normalize and process data for these neural networks. Encog trains using multithreaded resilient propagation. Encog can also make use of a GPU to further speed processing time. A GUI based workbench is also provided to help model and train neural networks.
  • FlinkML in Apache Flink - Distributed machine learning library in Flink.
  • H2O - ML engine that supports distributed learning on Hadoop, Spark or your laptop via APIs in R, Python, Scala, REST/JSON.
  • htm.java - General Machine Learning library using Numenta’s Cortical Learning Algorithm.
  • Hydrosphere Mist - a service for deployment Apache Spark MLLib machine learning models as realtime, batch or reactive web services.
  • LBJava - Learning Based Java is a modeling language for the rapid development of software systems, offers a convenient, declarative syntax for classifier and constraint definition directly in terms of the objects in the programmer's application.
  • liblinear-java - Java version of liblinear.
  • Mahout - Distributed machine learning.
  • Meka - An open source implementation of methods for multi-label classification and evaluation (extension to Weka).
  • MLlib in Apache Spark - Distributed machine learning library in Spark
  • Neuroph - Neuroph is lightweight Java neural network framework
  • ORYX - Lambda Architecture Framework using Apache Spark and Apache Kafka with a specialization for real-time large-scale machine learning.
  • RankLib - RankLib is a library of learning to rank algorithms. [Deprecated]
  • rapaio - statistics, data mining and machine learning toolbox in Java.
  • RapidMiner - RapidMiner integration into Java code.
  • Samoa SAMOA is a framework that includes distributed machine learning for data streams with an interface to plug-in different stream processing platforms.
  • SmileMiner - Statistical Machine Intelligence & Learning Engine.
  • Stanford Classifier - A classifier is a machine learning tool that will take data items and place them into one of k classes.
  • SystemML - flexible, scalable machine learning (ML) language.
  • Weka - Weka is a collection of machine learning algorithms for data mining tasks.

Speech Recognition

  • CMU Sphinx - Open Source Toolkit For Speech Recognition purely based on Java speech recognition library.

Data Analysis / Data Visualization

  • DataMelt - Mathematics software for numeric computation, statistics, symbolic calculations, data analysis and data visualization.
  • Dr. Michael Thomas Flanagan's Java Scientific Library [Deprecated]
  • Flink - Open source platform for distributed stream and batch data processing.
  • Hadoop - Hadoop/HDFS.
  • Impala - Real-time Query for Hadoop.
  • Onyx - Distributed, masterless, high performance, fault tolerant data processing. Written entirely in Clojure.
  • Spark - Spark is a fast and general engine for large-scale data processing.
  • Storm - Storm is a distributed realtime computation system.

Deep Learning

Javascript

Natural Language Processing

  • Knwl.js - A Natural Language Processor in JS.
  • natural - General natural language facilities for node.
  • NLP Compromise - Natural Language processing in the browser.
  • nlp.js - An NLP library built in node over Natural, with entity extraction, sentiment analysis, automatic language identify, and so more
  • Retext - Extensible system for analyzing and manipulating natural language.
  • Twitter-text - A JavaScript implementation of Twitter's text processing library.

Data Analysis / Data Visualization

  • amCharts
  • AnyChart
  • C3.js - customizable library based on D3.js for easy chart drawing.
  • chartjs
  • cheminfo - Platform for data visualization and analysis, using the visualizer project.
  • D3.js
  • D3xter - Straight forward plotting built on D3. [Deprecated]
  • datakit - A lightweight framework for data analysis in JavaScript
  • Datamaps - Customizable SVG map/geo visualizations using D3.js. [Deprecated]
  • dc.js
  • dimple
  • FusionCharts
  • High Charts
  • Learn JS Data
  • Nivo - built on top of the awesome d3 and Reactjs libraries
  • NVD3.js
  • science.js - Scientific and statistical computing in JavaScript. [Deprecated]
  • Sigma.js - JavaScript library dedicated to graph drawing.
  • statkit - Statistics kit for JavaScript. [Deprecated]
  • Z3d - Easily make interactive 3d plots built on Three.js [Deprecated]
  • ZingChart - library written on Vanilla JS for big data visualization.

General-Purpose Machine Learning

  • Auto ML - Automated machine learning, data formatting, ensembling, and hyperparameter optimization for competitions and exploration- just give it a .csv file!
  • Bayesian-Bandit - Bayesian bandit implementation for Node and the browser. [Deprecated]
  • Brain.js - Neural networks in JavaScript - continued community fork of Brain.
  • Brain - Neural networks in JavaScript [Deprecated]
  • Clusterfck - Agglomerative hierarchical clustering implemented in Javascript for Node.js and the browser. [Deprecated]
  • Clustering.js - Clustering algorithms implemented in Javascript for Node.js and the browser. [Deprecated]
  • Convnet.js - ConvNetJS is a Javascript library for training Deep Learning models[DEEP LEARNING] [Deprecated]
  • Decision Trees - NodeJS Implementation of Decision Tree using ID3 Algorithm. [Deprecated]
  • DN2A - Digital Neural Networks Architecture. [Deprecated]
  • figue - K-means, fuzzy c-means and agglomerative clustering.
  • Gaussian Mixture Model - Unsupervised machine learning with multivariate Gaussian mixture model.
  • JSMLT - Machine learning toolkit with classification and clustering for Node.js; supports visualization (see visualml.io).
  • kalman - Kalman filter for Javascript. [Deprecated]
  • Keras.js - Run Keras models in the browser, with GPU support provided by WebGL 2.
  • Kmeans.js - Simple Javascript implementation of the k-means algorithm, for node.js and the browser. [Deprecated]
  • kNear - JavaScript implementation of the k nearest neighbors algorithm for supervised learning.
  • LDA.js - LDA topic modeling for Node.js
  • Learning.js - Javascript implementation of logistic regression/c4.5 decision tree [Deprecated]
  • machinelearn.js - Machine Learning library for the web, Node.js and developers
  • mil-tokyo - List of several machine learning libraries.
  • ml.js - Machine learning and numerical analysis tools for Node.js and the Browser!
  • ml5 - Friendly machine learning for the web!
  • MXNet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.
  • Netron - Visualizer for machine learning models.
  • NeuralN - C++ Neural Network library for Node.js. It has advantage on large dataset and multi-threaded training. [Deprecated]
  • Node-fann - FANN (Fast Artificial Neural Network Library) bindings for Node.js [Deprecated]
  • Node-SVM - Support Vector Machine for Node.js
  • Pavlov.js - Reinforcement learning using Markov Decision Processes.
  • shaman - Node.js library with support for both simple and multiple linear regression. [Deprecated]
  • Synaptic - Architecture-free neural network library for Node.js and the browser.
  • TensorFlow.js - A WebGL accelerated, browser based JavaScript library for training and deploying ML models.
  • WebDNN - Fast Deep Neural Network Javascript Framework. WebDNN uses next generation JavaScript API, WebGPU for GPU execution, and WebAssembly for CPU execution.
  • xgboost-node - Run XGBoost model and make predictions in Node.js.

Misc

  • GreatCircle - Library for calculating great circle distance.
  • Lyric - Linear Regression library. [Deprecated]
  • MLPleaseHelp - MLPleaseHelp is a simple ML resource search engine. You can use this search engine right now at https://jgreenemi.github.io/MLPleaseHelp/, provided via Github Pages.
  • regression-js - A javascript library containing a collection of least squares fitting methods for finding a trend in a set of data.
  • simple-statistics - A JavaScript implementation of descriptive, regression, and inference statistics. Implemented in literate JavaScript with no dependencies, designed to work in all modern browsers (including IE) as well as in Node.js.
  • stdlib - A standard library for JavaScript and Node.js, with an emphasis on numeric computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
  • sylvester - Vector and Matrix math for JavaScript. [Deprecated]

Demos and Scripts

  • Half Beer - Beer glass classifier created with Synaptic.
  • NSFWJS - Indecent content checker with TensorFlow.js
  • Rock Paper Scissors - Rock Paper Scissors trained in the browser with TensorFlow.js
  • The Bot - Example of how the neural network learns to predict the angle between two points created with Synaptic.

Julia

General-Purpose Machine Learning

  • ANN - Julia artificial neural networks. [Deprecated]
  • Clustering - Basic functions for clustering data: k-means, dp-means, etc.
  • DA - Julia package for Regularized Discriminant Analysis.
  • Decision Tree - Decision Tree Classifier and Regressor.
  • Distances - Julia module for Distance evaluation.
  • Flux - Relax! Flux is the ML library that doesn't make you tensor
  • Gaussian Processes - Julia package for Gaussian processes.
  • GaussianMixtures - Large scale Gaussian Mixture Models.
  • GLM - Generalized linear models in Julia.
  • GLMNet - Julia wrapper for fitting Lasso/ElasticNet GLM models using glmnet.
  • Kernel Density - Kernel density estimators for julia.
  • Knet - Koç University Deep Learning Framework.
  • Local Regression - Local regression, so smooooth!
  • MachineLearning - Julia Machine Learning library. [Deprecated]
  • Mamba - Markov chain Monte Carlo (MCMC) for Bayesian analysis in Julia.
  • ManifoldLearning - A Julia package for manifold learning and nonlinear dimensionality reduction.
  • MCMC - MCMC tools for Julia. [Deprecated]
  • Merlin - Flexible Deep Learning Framework in Julia.
  • Mixed Models - A Julia package for fitting (statistical) mixed-effects models.
  • MLBase - A set of functions to support the development of machine learning algorithms.
  • Mocha - Deep Learning framework for Julia inspired by Caffe. [Deprecated]
  • MultivariateStats - Methods for dimensionality reduction.
  • MXNet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.
  • Naive Bayes - Simple Naive Bayes implementation in Julia. [Deprecated]
  • Neural - A neural network in Julia.
  • NMF - A Julia package for non-negative matrix factorization.
  • Online Learning [Deprecated]
  • PGM - A Julia framework for probabilistic graphical models.
  • Regression - Algorithms for regression analysis (e.g. linear regression and logistic regression). [Deprecated]
  • ROCAnalysis - Receiver Operating Characteristics and functions for evaluation probabilistic binary classifiers.
  • ScikitLearn - Julia implementation of the scikit-learn API.
  • Simple MCMC - basic mcmc sampler implemented in Julia. [Deprecated]
  • SVM - SVM's for Julia. [Deprecated]
  • XGBoost - eXtreme Gradient Boosting Package in Julia.

Natural Language Processing

  • Corpus Loaders - A julia package providing a variety of loaders for various NLP corpora.
  • Embeddings - Functions and data dependencies for loading various word embeddings
  • Languages - Julia package for working with various human languages
  • Text Analysis - Julia package for text analysis.
  • Topic Models - TopicModels for Julia. [Deprecated]
  • Word Tokenizers - Tokenizers for Natural Language Processing in Julia
  • WordNet - A Julia package for Princeton's WordNet

Data Analysis / Data Visualization

  • Data Arrays - Data structures that allow missing values. [Deprecated]
  • Data Frames Meta - Metaprogramming tools for DataFrames.
  • Data Read - Read files from Stata, SAS, and SPSS.
  • DataFrames - library for working with tabular data in Julia.
  • Distributions - A Julia package for probability distributions and associated functions.
  • Gadfly - Crafty statistical graphics for Julia.
  • Graph Layout - Graph layout algorithms in pure Julia.
  • Hypothesis Tests - Hypothesis tests for Julia.
  • Julia Data - library for working with tabular data in Julia. [Deprecated]
  • LightGraphs - Graph modeling and analysis.
  • RDataSets - Julia package for loading many of the data sets available in R.
  • Sampling - Basic sampling algorithms for Julia.
  • Stats - Statistical tests for Julia.
  • Time Series - Time series toolkit for Julia.

Misc Stuff / Presentations

  • DataDeps - Reproducible data setup for reproducible science.
  • DSP - Digital Signal Processing (filtering, periodograms, spectrograms, window functions).
  • Images - An image library for Julia.
  • JuliaCon Presentations - Presentations for JuliaCon.
  • SignalProcessing - Signal Processing tools for Julia.

Lua

General-Purpose Machine Learning

  • Torch7
    • cephes - Cephes mathematical functions library, wrapped for Torch. Provides and wraps the 180+ special mathematical functions from the Cephes mathematical library, developed by Stephen L. Moshier. It is used, among many other places, at the heart of SciPy. [Deprecated]
    • autograd - Autograd automatically differentiates native Torch code. Inspired by the original Python version.
    • graph - Graph package for Torch. [Deprecated]
    • randomkit - Numpy's randomkit, wrapped for Torch. [Deprecated]
    • signal - A signal processing toolbox for Torch-7. FFT, DCT, Hilbert, cepstrums, stft.
    • nn - Neural Network package for Torch.
    • torchnet - framework for torch which provides a set of abstractions aiming at encouraging code re-use as well as encouraging modular programming.
    • nngraph - This package provides graphical computation for nn library in Torch7.
    • nnx - A completely unstable and experimental package that extends Torch's builtin nn library.
    • rnn - A Recurrent Neural Network library that extends Torch's nn. RNNs, LSTMs, GRUs, BRNNs, BLSTMs, etc.
    • dpnn - Many useful features that aren't part of the main nn package.
    • dp - A deep learning library designed for streamlining research and development using the Torch7 distribution. It emphasizes flexibility through the elegant use of object-oriented design patterns. [Deprecated]
    • optim - An optimization library for Torch. SGD, Adagrad, Conjugate-Gradient, LBFGS, RProp and more.
    • unsup - A package for unsupervised learning in Torch. Provides modules that are compatible with nn (LinearPsd, ConvPsd, AutoEncoder, ...), and self-contained algorithms (k-means, PCA). [Deprecated]
    • manifold - A package to manipulate manifolds.
    • svm - Torch-SVM library. [Deprecated]
    • lbfgs - FFI Wrapper for liblbfgs. [Deprecated]
    • vowpalwabbit - An old vowpalwabbit interface to torch. [Deprecated]
    • OpenGM - OpenGM is a C++ library for graphical modeling, and inference. The Lua bindings provide a simple way of describing graphs, from Lua, and then optimizing them with OpenGM. [Deprecated]
    • spaghetti - Spaghetti (sparse linear) module for torch7 by @MichaelMathieu [Deprecated]
    • LuaSHKit - A lua wrapper around the Locality sensitive hashing library SHKit [Deprecated]
    • kernel smoothing - KNN, kernel-weighted average, local linear regression smoothers. [Deprecated]
    • cutorch - Torch CUDA Implementation.
    • cunn - Torch CUDA Neural Network Implementation.
    • imgraph - An image/graph library for Torch. This package provides routines to construct graphs on images, segment them, build trees out of them, and convert them back to images. [Deprecated]
    • videograph - A video/graph library for Torch. This package provides routines to construct graphs on videos, segment them, build trees out of them, and convert them back to videos. [Deprecated]
    • saliency - code and tools around integral images. A library for finding interest points based on fast integral histograms. [Deprecated]
    • stitch - allows us to use hugin to stitch images and apply same stitching to a video sequence. [Deprecated]
    • sfm - A bundle adjustment/structure from motion package. [Deprecated]
    • fex - A package for feature extraction in Torch. Provides SIFT and dSIFT modules. [Deprecated]
    • OverFeat - A state-of-the-art generic dense feature extractor. [Deprecated]
    • wav2letter - a simple and efficient end-to-end Automatic Speech Recognition (ASR) system from Facebook AI Research.
  • Lua - Numerical Algorithms [Deprecated]
  • Lunatic Python
  • Lunum [Deprecated]
  • Numeric Lua
  • SciLua

Demos and Scripts

  • Core torch7 demos repository.
    • linear-regression, logistic-regression
    • face detector (training and detection as separate demos)
    • mst-based-segmenter
    • train-a-digit-classifier
    • train-autoencoder
    • optical flow demo
    • train-on-housenumbers
    • train-on-cifar
    • tracking with deep nets
    • kinect demo
    • filter-bank visualization
    • saliency-networks
  • Music Tagging - Music Tagging scripts for torch7.
  • torch-datasets - Scripts to load several popular datasets including:
  • Training a Convnet for the Galaxy-Zoo Kaggle challenge(CUDA demo)
    • BSR 500
    • CIFAR-10
    • COIL
    • Street View House Numbers
    • MNIST
    • NORB
  • Atari2600 - Scripts to generate a dataset with static frames from the Arcade Learning Environment.

Matlab

Computer Vision

  • Bandlets - MATLAB code for bandlet transform.
  • Contourlets - MATLAB source code that implements the contourlet transform and its utility functions.
  • Curvelets - The Curvelet transform is a higher dimensional generalization of the Wavelet transform designed to represent images at different scales and different angles.
  • mexopencv - Collection and a development kit of MATLAB mex functions for OpenCV library.
  • Shearlets - MATLAB code for shearlet transform.

Natural Language Processing

  • NLP - An NLP library for Matlab.

General-Purpose Machine Learning

  • Training a deep autoencoder or a classifier on MNIST digits - Training a deep autoencoder or a classifier on MNIST digits[DEEP LEARNING].
  • Caffe - A deep learning framework developed with cleanliness, readability, and speed in mind.
  • Convolutional-Recursive Deep Learning for 3D Object Classification - Convolutional-Recursive Deep Learning for 3D Object Classification[DEEP LEARNING].
  • LibLinear - A Library for Large Linear Classification.
  • LibSVM - A Library for Support Vector Machines.
  • Machine Learning in MatLab/Octave - examples of popular machine learning algorithms (neural networks, linear/logistic regressions, K-Means, etc.) with code examples and mathematics behind them being explained.
  • Machine Learning Module - Class on machine w/ PDF, lectures, code
  • MXNet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.
  • Optunity - A library dedicated to automated hyperparameter optimization with a simple, lightweight API to facilitate drop-in replacement of grid search. Optunity is written in Python but interfaces seamlessly with MATLAB.
  • Pattern Recognition and Machine Learning - This package contains the matlab implementation of the algorithms described in the book Pattern Recognition and Machine Learning by C. Bishop.
  • Pattern Recognition Toolbox - A complete object-oriented environment for machine learning in Matlab.
  • Spider - The spider is intended to be a complete object orientated environment for machine learning in Matlab.
  • ThunderSVM - An Open-Source SVM Library on GPUs and CPUs

Data Analysis / Data Visualization

  • gaimc - Efficient pure-Matlab implementations of graph algorithms to complement MatlabBGL's mex functions.
  • matlab_bgl - MatlabBGL is a Matlab package for working with graphs.

.NET

Computer Vision

  • Accord.NET - Together with AForge.NET, this library can provide image processing and computer vision algorithms to Windows, Windows RT and Windows Phone. Some components are also available for Java and Android.
  • AForge.NET - Open source C# framework for developers and researchers in the fields of Computer Vision and Artificial Intelligence. Development has now shifted to GitHub.
  • Emgu CV - Cross platform wrapper of OpenCV which can be compiled in Mono to be run on Windows, Linus, Mac OS X, iOS, and Android.
  • OpenCVDotNet - A wrapper for the OpenCV project to be used with .NET applications.

Natural Language Processing

  • Stanford.NLP for .NET - A full port of Stanford NLP packages to .NET and also available precompiled as a NuGet package.

General-Purpose Machine Learning

  • Accord-Framework -The Accord.NET Framework is a complete framework for building machine learning, computer vision, computer audition, signal processing and statistical applications.
  • Accord.MachineLearning - Support Vector Machines, Decision Trees, Naive Bayesian models, K-means, Gaussian Mixture models and general algorithms such as Ransac, Cross-validation and Grid-Search for machine-learning applications. This package is part of the Accord.NET Framework.
  • DiffSharp - An automatic differentiation (AD) library providing exact and efficient derivatives (gradients, Hessians, Jacobians, directional derivatives, and matrix-free Hessian- and Jacobian-vector products) for machine learning and optimization applications. Operations can be nested to any level, meaning that you can compute exact higher-order derivatives and differentiate functions that are internally making use of differentiation, for applications such as hyperparameter optimization.
  • Encog - An advanced neural network and machine learning framework. Encog contains classes to create a wide variety of networks, as well as support classes to normalize and process data for these neural networks. Encog trains using multithreaded resilient propagation. Encog can also make use of a GPU to further speed processing time. A GUI based workbench is also provided to help model and train neural networks.
  • GeneticSharp - Multi-platform genetic algorithm library for .NET Core and .NET Framework. The library has several implementations of GA operators, like: selection, crossover, mutation, reinsertion and termination.
  • Infer.NET - Infer.NET is a framework for running Bayesian inference in graphical models. One can use Infer.NET to solve many different kinds of machine learning problems, from standard problems like classification, recommendation or clustering through to customised solutions to domain-specific problems. Infer.NET has been used in a wide variety of domains including information retrieval, bioinformatics, epidemiology, vision, and many others.
  • ML.NET - ML.NET is a cross-platform open-source machine learning framework which makes machine learning accessible to .NET developers. ML.NET was originally developed in Microsoft Research and evolved into a significant framework over the last decade and is used across many product groups in Microsoft like Windows, Bing, PowerPoint, Excel and more.
  • Neural Network Designer - DBMS management system and designer for neural networks. The designer application is developed using WPF, and is a user interface which allows you to design your neural network, query the network, create and configure chat bots that are capable of asking questions and learning from your feed back. The chat bots can even scrape the internet for information to return in their output as well as to use for learning.
  • Vulpes - Deep belief and deep learning implementation written in F# and leverages CUDA GPU execution with Alea.cuBase.

Data Analysis / Data Visualization

  • Math.NET Numerics - Numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL Portable Profiles 47 and 344; Android/iOS with Xamarin.
  • numl - numl is a machine learning library intended to ease the use of using standard modeling techniques for both prediction and clustering.
  • Sho - Sho is an interactive environment for data analysis and scientific computing that lets you seamlessly connect scripts (in IronPython) with compiled code (in .NET) to enable fast and flexible prototyping. The environment includes powerful and efficient libraries for linear algebra as well as data visualization that can be used from any .NET language, as well as a feature-rich interactive shell for rapid development.

Objective C

General-Purpose Machine Learning

  • BPN-NeuralNetwork - It implemented 3 layers neural network ( Input Layer, Hidden Layer and Output Layer ) and it named Back Propagation Neural Network (BPN). This network can be used in products recommendation, user behavior analysis, data mining and data analysis. [Deprecated]
  • KRFuzzyCMeans-Algorithm - It implemented Fuzzy C-Means (FCM) the fuzzy clustering / classification algorithm on Machine Learning. It could be used in data mining and image compression. [Deprecated]
  • KRHebbian-Algorithm - It is a non-supervisor and self-learning algorithm (adjust the weights) in neural network of Machine Learning. [Deprecated]
  • KRKmeans-Algorithm - It implemented K-Means the clustering and classification algorithm. It could be used in data mining and image compression. [Deprecated]
  • MAChineLearning - An Objective-C multilayer perceptron library, with full support for training through backpropagation. Implemented using vDSP and vecLib, it's 20 times faster than its Java equivalent. Includes sample code for use from Swift.
  • MLPNeuralNet - Fast multilayer perceptron neural network library for iOS and Mac OS X. MLPNeuralNet predicts new examples by trained neural network. It is built on top of the Apple's Accelerate Framework, using vectorized operations and hardware acceleration if available. [Deprecated]
  • Multi-Perceptron-NeuralNetwork - it implemented multi-perceptrons neural network (ニューラルネットワーク) based on Back Propagation Neural Network (BPN) and designed unlimited-hidden-layers.
  • YCML - A Machine Learning framework for Objective-C and Swift (OS X / iOS).

OCaml

General-Purpose Machine Learning

  • GPR - Efficient Gaussian Process Regression in OCaml.
  • Libra-Tk - Algorithms for learning and inference with discrete probabilistic models.
  • Oml - A general statistics and machine learning library.
  • TensorFlow - OCaml bindings for TensorFlow.

Perl

Data Analysis / Data Visualization

General-Purpose Machine Learning

Perl 6

Data Analysis / Data Visualization

General-Purpose Machine Learning

PHP

Natural Language Processing

  • jieba-php - Chinese Words Segmentation Utilities.

General-Purpose Machine Learning

  • 19 Questions - A machine learning / bayesian inference assigning attributes to objects.
  • PHP-ML - Machine Learning library for PHP. Algorithms, Cross Validation, Neural Network, Preprocessing, Feature Extraction and much more in one library.
  • PredictionBuilder - A library for machine learning that builds predictions using a linear regression.
  • Rubix ML - A high-level machine learning (ML) library that lets you build programs that learn from data using the PHP language.

Python

Computer Vision

  • albumentations - А fast and framework agnostic image augmentation library that implements a diverse set of augmentation techniques. Supports classification, segmentation, detection out of the box. Was used to win a number of Deep Learning competitions at Kaggle, Topcoder and those that were a part of the CVPR workshops.
  • Detectron - FAIR's software system that implements state-of-the-art object detection algorithms, including Mask R-CNN. It is written in Python and powered by the Caffe2 deep learning framework.
  • dockerface - Easy to install and use deep learning Faster R-CNN face detection for images and video in a docker container.
  • face_recognition - Face recognition library that recognize and manipulate faces from Python or from the command line.
  • imutils - A library containg Convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.
  • OpenFace - Free and open source face recognition with deep neural networks.
  • PCV - Open source Python module for computer vision. [Deprecated]
  • pytessarct - Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded in images.Python-tesseract is a wrapper for Google's Tesseract-OCR Engine>.
  • PyTorchCV - A PyTorch-Based Framework for Deep Learning in Computer Vision.
  • Scikit-Image - A collection of algorithms for image processing in Python.
  • SimpleCV - An open source computer vision framework that gives access to several high-powered computer vision libraries, such as OpenCV. Written on Python and runs on Mac, Windows, and Ubuntu Linux.
  • Vigranumpy - Python bindings for the VIGRA C++ computer vision library.

Natural Language Processing

  • BigARTM - topic modelling platform.
  • BLLIP Parser - Python bindings for the BLLIP Natural Language Parser (also known as the Charniak-Johnson parser). [Deprecated]
  • CLTK - The Classical Language Toolkit.
  • colibri-core - Python binding to C++ library for extracting and working with with basic linguistic constructions such as n-grams and skipgrams in a quick and memory-efficient way.
  • Dedupe - A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.
  • DeepPavlov - conversational AI library with many pretrained Russian NLP models.
  • Distance - Levenshtein and Hamming distance computation. [Deprecated]
  • DrQA - Reading Wikipedia to answer open-domain questions.
  • editdistance - fast implementation of edit distance.
  • Fuzzy Wuzzy - Fuzzy String Matching in Python.
  • genius - A Chinese segment base on Conditional Random Field.
  • jellyfish - a python library for doing approximate and phonetic matching of strings.
  • jieba - Chinese Words Segmentation Utilities.
  • KoNLPy - A Python package for Korean natural language processing.
  • loso - Another Chinese segmentation library. [Deprecated]
  • NeuroNER - Named-entity recognition using neural networks providing state-of-the-art-results
  • NLTK - A leading platform for building Python programs to work with human language data.
  • nut - Natural language Understanding Toolkit. [Deprecated]
  • Pattern - A web mining module for the Python programming language. It has tools for natural language processing, machine learning, among others.
  • pkuseg-python - A better version of Jieba, developed by Peking University.
  • Polyglot - Multilingual text (NLP) processing toolkit.
  • PyNLPl - Python Natural Language Processing Library. General purpose NLP library for Python. Also contains some specific modules for parsing common NLP formats, most notably for FoLiA, but also ARPA language models, Moses phrasetables, GIZA++ alignments.
  • PyStanfordDependencies - Python interface for converting Penn Treebank trees to Stanford Dependencies.
  • python-frog - Python binding to Frog, an NLP suite for Dutch. (pos tagging, lemmatisation, dependency parsing, NER)
  • python-ucto - Python binding to ucto (a unicode-aware rule-based tokenizer for various languages).
  • python-zpar - Python bindings for ZPar, a statistical part-of-speech-tagger, constiuency parser, and dependency parser for English.
  • Quepy - A python framework to transform natural language questions to queries in a database query language.
  • rasa_nlu - turn natural language into structured data.
  • Rosetta - Text processing tools and wrappers (e.g. Vowpal Wabbit)
  • Snips NLU - Natural Language Understanding library for intent classification and entity extraction
  • SnowNLP - A library for processing Chinese text.
  • spaCy - Industrial strength NLP with Python and Cython.
  • spammy - A library for email Spam filtering built on top of nltk
  • stanford-corenlp-python - Python wrapper for Stanford CoreNLP [Deprecated]
  • textacy - higher-level NLP built on Spacy.
  • TextBlob - Providing a consistent API for diving into common natural language processing (NLP) tasks. Stands on the giant shoulders of NLTK and Pattern, and plays nicely with both.
  • YAlign - A sentence aligner, a friendly tool for extracting parallel sentences from comparable corpora. [Deprecated]
  • yase - Transcode sentence (or other sequence) to list of word vector .

General-Purpose Machine Learning

  • Annoy - Approximate nearest neighbours implementation.
  • Apache SINGA - An Apache Incubating project for developing an open source machine learning library.
  • astroML - Machine Learning and Data Mining for Astronomy.
  • auto_ml - Automated machine learning for production and analytics. Lets you focus on the fun parts of ML, while outputting production-ready code, and detailed analytics of your dataset and results. Includes support for NLP, XGBoost, CatBoost, LightGBM, and soon, deep learning.
  • Bayesian Methods for Hackers - Book/iPython notebooks on Probabilistic Programming in Python.
  • BentoML: Toolkit for package and deploy machine learning models for serving in production
  • BigML - A library that contacts external servers.
  • Bolt - Bolt Online Learning Toolbox. [Deprecated]
  • Brainstorm - Fast, flexible and fun neural networks. This is the successor of PyBrain.
  • breze - Theano based library for deep and recurrent neural networks. [Deprecated]
  • Caffe - A deep learning framework developed with cleanliness, readability, and speed in mind.
  • CatBoost - General purpose gradient boosting on decision trees library with categorical features support out of the box. It is easy to install, well documented and supports CPU and GPU (even multi-GPU) computation.
  • Chainer - Flexible neural network framework.
  • CNTK - Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit. Documentation can be found here.
  • Cogitare: A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python.
  • Cornac - A comparative framework for multimodal recommender systems with a focus on models leveraging auxiliary data.
  • CoverTree - Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree [Deprecated]
  • Crab - A flexible, fast recommender engine. [Deprecated]
  • creme: A framework for online machine learning.
  • deap - Evolutionary algorithm framework.
  • DIGITS - The Deep Learning GPU Training System (DIGITS) is a web application for training deep learning models.
  • Edward - A library for probabilistic modeling, inference, and criticism. Built on top of TensorFlow.
  • Featureforge A set of tools for creating and testing machine learning features, with a scikit-learn compatible API.
  • fuku-ml - Simple machine learning library, including Perceptron, Regression, Support Vector Machine, Decision Tree and more, it's easy to use and easy to learn for beginners.
  • gensim - Topic Modelling for Humans.
  • graphlab-create - A library with various machine learning models (regression, clustering, recommender systems, graph analytics, etc.) implemented on top of a disk-backed DataFrame.
  • hebel - GPU-Accelerated Deep Learning Library in Python. [Deprecated]
  • Hydrosphere Mist - a service for deployment Apache Spark MLLib machine learning models as realtime, batch or reactive web services.
  • Image-to-Image Translation with Conditional Adversarial Networks - Implementation of image to image (pix2pix) translation from the paper by isola et al.[DEEP LEARNING]
  • imbalanced-learn - Python module to perform under sampling and over sampling with various techniques.
  • keras - High-level neural networks frontend for TensorFlow, CNTK and Theano.
  • Lasagne - Lightweight library to build and train neural networks in Theano.
  • machine learning - automated build consisting of a web-interface, and set of programmatic-interface API, for support vector machines. Corresponding dataset(s) are stored into a SQL database, then generated model(s) used for prediction(s), are stored into a NoSQL datastore.
  • metric-learn - A Python module for metric learning.
  • Microsoft Recommenders: Examples and best practices for building recommendation systems, provided as Jupyter notebooks. The repo contains some of the latest state of the art algorithms from Microsoft Research as well as from other companies and institutions.
  • milk - Machine learning toolkit focused on supervised classification. [Deprecated]
  • MindsDB - Open Source framework to streamline use of neural networks.
  • MiraiML: An asynchronous engine for continuous & autonomous machine learning, built for real-time usage.
  • ML-From-Scratch - Implementations of Machine Learning models from scratch in Python with a focus on transparency. Aims to showcase the nuts and bolts of ML in an accessible way.
  • mlens - A high performance, memory efficient, maximally parallelized ensemble learning, integrated with scikit-learn.
  • MLlib in Apache Spark - Distributed machine learning library in Spark
  • mlxtend - A library consisting of useful tools for data science and machine learning tasks.
  • modAL - A modular active learning framework for Python, built on top of scikit-learn.
  • mrjob - A library to let Python program run on Hadoop.
  • MXNet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.
  • neon - Nervana's high-performance Python-based Deep Learning framework [DEEP LEARNING].
  • neonrvm - neonrvm is an open source machine learning library based on RVM technique. It's written in C programming language and comes with Python programming language bindings.
  • Netron - Visualizer for machine learning models.
  • Neural Networks and Deep Learning - Code samples for my book "Neural Networks and Deep Learning" [DEEP LEARNING].
  • Neuraxle: A framework providing the right abstractions to ease research, development, and deployment of your ML pipelines.
  • neurolab
  • neuropredict - Aimed at novice machine learners and non-expert programmers, this package offers easy (no coding needed) and comprehensive machine learning (evaluation and full report of predictive performance WITHOUT requiring you to code) in Python for NeuroImaging and any other type of features. This is aimed at absorbing the much of the ML workflow, unlike other packages like nilearn and pymvpa, which require you to learn their API and code to produce anything useful.
  • nilearn - Machine learning for NeuroImaging in Python.
  • numpy-ML: Reference implementations of ML models written in numpy
  • NuPIC - Numenta Platform for Intelligent Computing.
  • Optunity - A library dedicated to automated hyperparameter optimization with a simple, lightweight API to facilitate drop-in replacement of grid search.
  • Orange - Open source data visualization and data analysis for novices and experts.
  • Parris - Parris, the automated infrastructure setup tool for machine learning algorithms.
  • pattern - Web mining module for Python.
  • Pebl - Python Environment for Bayesian Learning. [Deprecated]
  • pgmpy A python library for working with Probabilistic Graphical Models.
  • pomegranate - Hidden Markov Models for Python, implemented in Cython for speed and efficiency.
  • prophet - Fast and automated time series forecasting framework by Facebook.
  • PyBrain - Another Python Machine Learning Library.
  • pydeep - Deep Learning In Python. [Deprecated]
  • Pyevolve - Genetic algorithm framework. [Deprecated]
  • pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations.
  • Pylearn2 - A Machine Learning library based on Theano.
  • PyOD -> Python Outlier Detection, comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. Featured for Advanced models, including Neural Networks/Deep Learning and Outlier Ensembles.
  • python-recsys - A Python library for implementing a Recommender System.
  • python-timbl - A Python extension module wrapping the full TiMBL C++ programming interface. Timbl is an elaborate k-Nearest Neighbours machine learning toolkit.
  • PyTorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration
  • REP - an IPython-based environment for conducting data-driven research in a consistent and reproducible way. REP is not trying to substitute scikit-learn, but extends it and provides better user experience. [Deprecated]
  • Restricted Boltzmann Machines -Restricted Boltzmann Machines in Python. [DEEP LEARNING]
  • rgf_python - Python bindings for Regularized Greedy Forest (Tree) Library.
  • scikit-learn - A Python module for machine learning built on top of SciPy.
  • Shogun - The Shogun Machine Learning Toolbox.
  • SimpleAI Python implementation of many of the artificial intelligence algorithms described on the book "Artificial Intelligence, a Modern Approach". It focuses on providing an easy to use, well documented and tested library.
  • skbayes - Python package for Bayesian Machine Learning with scikit-learn API.
  • SKLL - A wrapper around scikit-learn that makes it simpler to conduct experiments.
  • Spearmint - Spearmint is a package to perform Bayesian optimization according to the algorithms outlined in the paper: Practical Bayesian Optimization of Machine Learning Algorithms. Jasper Snoek, Hugo Larochelle and Ryan P. Adams. Advances in Neural Information Processing Systems, 2012. [Deprecated]
  • stacked_generalization - Implementation of machine learning stacking technic as handy library in Python.
  • StellarGraph: Machine Learning on Graphs, a Python library for machine learning on graph-structured (network-structured) data.
  • steppy-toolkit -> Curated collection of the neural networks, transformers and models that make your machine learning work faster and more effective.
  • steppy -> Lightweight, Python library for fast and reproducible machine learning experimentation. Introduces very simple interface that enables clean machine learning pipeline design.
  • Surprise - A scikit for building and analyzing recommender systems.
  • TensorFlow - Open source software library for numerical computation using data flow graphs.
  • TFLearn - Deep learning library featuring a higher-level API for TensorFlow.
  • Thampi - Machine Learning Prediction System on AWS Lambda
  • Theano - Optimizing GPU-meta-programming code generating array oriented optimizing math compiler in Python.
  • thinking bayes - Book on Bayesian Analysis.
  • topik - Topic modelling toolkit. [Deprecated]
  • TPOT - Tool that automatically creates and optimizes machine learning pipelines using genetic programming. Consider it your personal data science assistant, automating a tedious part of machine learning.
  • Turi Create - Machine learning from Apple. Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app.
  • Xcessiv - A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling.
  • XGBoost - Python bindings for eXtreme Gradient Boosting (Tree) Library.
  • xLearn - A high performance, easy-to-use, and scalable machine learning package, which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data, which is very common in Internet services such as online advertisement and recommender systems.
  • xRBM - A library for Restricted Boltzmann Machine (RBM) and its conditional variants in Tensorflow.

Data Analysis / Data Visualization

  • altair - A Python to Vega translator.
  • astropy - A community Python library for Astronomy.
  • Blaze - NumPy and Pandas interface to Big Data.
  • bokeh - Interactive Web Plotting for Python.
  • Bowtie - A dashboard library for interactive visualizations using flask socketio and react.
  • bqplot - An API for plotting in Jupyter (IPython).
  • cerebro2 A web-based visualization and debugging platform for NuPIC. [Deprecated]
  • d3py - A plotting library for Python, based on D3.js.
  • Dash - A framework for creating analytical web applications built on top of Plotly.js, React, and Flask
  • Dora - Tools for exploratory data analysis in Python.
  • emcee - The Python ensemble sampling toolkit for affine-invariant MCMC.
  • ggfortify - Unified interface to ggplot2 popular R packages.
  • ggplot - Same API as ggplot2 for R. [Deprecated]
  • HDBScan - implementation of the hdbscan algorithm in Python - used for clustering
  • igraph - binding to igraph library - General purpose graph library.
  • Kartograph.py - Rendering beautiful SVG maps in Python.
  • Lambdo - A workflow engine for solving machine learning problems by combining in one analysis pipeline (i) feature engineering and machine learning (ii) model training and prediction (iii) table population and column evaluation via user-defined (Python) functions.
  • lime - Lime is about explaining what machine learning classifiers (or models) are doing. It is able to explain any black box classifier, with two or more classes.
  • Mars - A tensor-based framework for large-scale data computation which often regarded as a parallel and distributed version of NumPy.
  • matplotlib - A Python 2D plotting library.
  • NetworkX - A high-productivity software for complex networks.
  • Numba - Python JIT (just in time) compiler to LLVM aimed at scientific Python by the developers of Cython and NumPy.
  • NumPy - A fundamental package for scientific computing with Python.
  • NuPIC Studio An all-in-one NuPIC Hierarchical Temporal Memory visualization and debugging super-tool! [Deprecated]
  • Open Mining - Business Intelligence (BI) in Python (Pandas web interface) [Deprecated]
  • Pandas - A library providing high-performance, easy-to-use data structures and data analysis tools.
  • pastalog - Simple, realtime visualization of neural network training performance.
  • Petrel - Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python.
  • plotly - Collaborative web plotting for Python and matplotlib.
  • pycascading [Deprecated]
  • PyCM - PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters
  • PyDexter - Simple plotting for Python. Wrapper for D3xterjs; easily render charts in-browser.
  • PyDy - Short for Python Dynamics, used to assist with workflow in the modeling of dynamic motion based around NumPy, SciPy, IPython, and matplotlib.
  • pygal - A Python SVG Charts Creator.
  • PyMC - Markov Chain Monte Carlo sampling toolkit.
  • PyQtGraph - A pure-python graphics and GUI library built on PyQt4 / PySide and NumPy.
  • Ruffus - Computation Pipeline library for python.
  • scikit-plot - A visualization library for quick and easy generation of common plots in data analysis and machine learning.
  • SciPy - A Python-based ecosystem of open-source software for mathematics, science, and engineering.
  • Seaborn - A python visualization library based on matplotlib.
  • somoclu Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters, has python API.
  • SOMPY - Self Organizing Map written in Python (Uses neural networks for data analysis).
  • SparklingPandas Pandas on PySpark (POPS).
  • statsmodels - Statistical modeling and econometrics in Python.
  • Superset - A data exploration platform designed to be visual, intuitive, and interactive.
  • SymPy - A Python library for symbolic mathematics.
  • TensorWatch - Debugging and visualization tool for machine learning and data science. It extensively leverages Jupyter Notebook to show real-time visualizations of data in running processes such as machine learning training.
  • vispy - GPU-based high-performance interactive OpenGL 2D/3D data visualization library.
  • visualize_ML - A python package for data exploration and data analysis. [Deprecated]
  • windML - A Python Framework for Wind Energy Analysis and Prediction.
  • zipline - A Pythonic algorithmic trading library.

Misc Scripts / iPython Notebooks / Codebases

Neural Networks

  • NeuralTalk - NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.
  • Neuron - Neuron is simple class for time series predictions. It's utilize LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neural networks learned with Gradient descent or LeLevenberg–Marquardt algorithm.
  • nn_builder - nn_builder is a python package that lets you build neural networks in 1 line =======
  • Data Driven Code - Very simple implementation of neural networks for dummies in python without using any libraries, with detailed comments.
  • Machine Learning, Data Science and Deep Learning with Python - LiveVideo course that covers machine learning, Tensorflow, artificial intelligence, and neural networks.
  • NeuralTalk - NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences. [Deprecated]
  • Neuron - Neuron is simple class for time series predictions. It's utilize LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neural networks learned with Gradient descent or LeLevenberg–Marquardt algorithm. [Deprecated]

Kaggle Competition Source Code

Reinforcement Learning

  • Coach - Reinforcement Learning Coach by Intel® AI Lab enables easy experimentation with state of the art Reinforcement Learning algorithms
  • DeepMind Lab - DeepMind Lab is a 3D learning environment based on id Software's Quake III Arena via ioquake3 and other open source software. Its primary purpose is to act as a testbed for research in artificial intelligence, especially deep reinforcement learning.
  • Gym - OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms.
  • Retro - Retro Games in Gym
  • Roboschool - Open-source software for robot simulation, integrated with OpenAI Gym.
  • Serpent.AI - Serpent.AI is a game agent framework that allows you to turn any video game you own into a sandbox to develop AI and machine learning experiments. For both researchers and hobbyists.
  • SLM Lab - Modular Deep Reinforcement Learning framework in PyTorch.
  • ViZDoom - ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.

Ruby

Natural Language Processing

  • Awesome NLP with Ruby - Curated link list for practical natural language processing in Ruby.
  • Raspel - raspell is an interface binding for ruby. [Deprecated]
  • Stemmer - Expose libstemmer_c to Ruby. [Deprecated]
  • Treat - Text REtrieval and Annotation Toolkit, definitely the most comprehensive toolkit I’ve encountered so far for Ruby.
  • Twitter-text-rb - A library that does auto linking and extraction of usernames, lists and hashtags in tweets.
  • UEA Stemmer - Ruby port of UEALite Stemmer - a conservative stemmer for search and indexing.

General-Purpose Machine Learning

Data Analysis / Data Visualization

  • Arel [Deprecated]
  • Bioruby
  • data-visualization-ruby - Source code and supporting content for my Ruby Manor presentation on Data Visualisation with Ruby. [Deprecated]
  • Glean - A data management tool for humans. [Deprecated]
  • plot-rb - A plotting library in Ruby built on top of Vega and D3. [Deprecated]
  • rsruby - Ruby - R bridge.
  • ruby-plot - gnuplot wrapper for Ruby, especially for plotting ROC curves into SVG files. [Deprecated]
  • SciRuby
  • scruffy - A beautiful graphing toolkit for Ruby.

Misc

Rust

General-Purpose Machine Learning

  • deeplearn-rs - deeplearn-rs provides simple networks that use matrix multiplication, addition, and ReLU under the MIT license.
  • leaf - open source framework for machine intelligence, sharing concepts from TensorFlow and Caffe. Available under the MIT license. [Deprecated]
  • RusticSOM - A Rust library for Self Organising Maps (SOM).
  • rustlearn - a machine learning framework featuring logistic regression, support vector machines, decision trees and random forests.
  • RustNN - RustNN is a feedforward neural network library. [Deprecated]
  • rusty-machine - a pure-rust machine learning library.

R

General-Purpose Machine Learning

  • ahaz - ahaz: Regularization for semiparametric additive hazards regression. [Deprecated]
  • arules - arules: Mining Association Rules and Frequent Itemsets
  • biglasso - biglasso: Extending Lasso Model Fitting to Big Data in R.
  • bmrm - bmrm: Bundle Methods for Regularized Risk Minimization Package.
  • Boruta - Boruta: A wrapper algorithm for all-relevant feature selection.
  • bst - bst: Gradient Boosting.
  • C50 - C50: C5.0 Decision Trees and Rule-Based Models.
  • caret - Classification and Regression Training: Unified interface to ~150 ML algorithms in R.
  • caretEnsemble - caretEnsemble: Framework for fitting multiple caret models as well as creating ensembles of such models. [Deprecated]
  • CatBoost - General purpose gradient boosting on decision trees library with categorical features support out of the box for R.
  • Clever Algorithms For Machine Learning
  • CORElearn - CORElearn: Classification, regression, feature evaluation and ordinal evaluation.
  • CoxBoost - CoxBoost: Cox models by likelihood based boosting for a single survival endpoint or competing risks [Deprecated]
  • Cubist - Cubist: Rule- and Instance-Based Regression Modeling.
  • e1071 - e1071: Misc Functions of the Department of Statistics (e1071), TU Wien
  • earth - earth: Multivariate Adaptive Regression Spline Models
  • elasticnet - elasticnet: Elastic-Net for Sparse Estimation and Sparse PCA.
  • ElemStatLearn - ElemStatLearn: Data sets, functions and examples from the book: "The Elements of Statistical Learning, Data Mining, Inference, and Prediction" by Trevor Hastie, Robert Tibshirani and Jerome Friedman Prediction" by Trevor Hastie, Robert Tibshirani and Jerome Friedman.
  • evtree - evtree: Evolutionary Learning of Globally Optimal Trees.
  • forecast - forecast: Timeseries forecasting using ARIMA, ETS, STLM, TBATS, and neural network models.
  • forecastHybrid - forecastHybrid: Automatic ensemble and cross validation of ARIMA, ETS, STLM, TBATS, and neural network models from the "forecast" package.
  • fpc - fpc: Flexible procedures for clustering.
  • frbs - frbs: Fuzzy Rule-based Systems for Classification and Regression Tasks. [Deprecated]
  • GAMBoost - GAMBoost: Generalized linear and additive models by likelihood based boosting. [Deprecated]
  • gamboostLSS - gamboostLSS: Boosting Methods for GAMLSS.
  • gbm - gbm: Generalized Boosted Regression Models.
  • glmnet - glmnet: Lasso and elastic-net regularized generalized linear models.
  • glmpath - glmpath: L1 Regularization Path for Generalized Linear Models and Cox Proportional Hazards Model.
  • GMMBoost - GMMBoost: Likelihood-based Boosting for Generalized mixed models. [Deprecated]
  • grplasso - grplasso: Fitting user specified models with Group Lasso penalty.
  • grpreg - grpreg: Regularization paths for regression models with grouped covariates.
  • h2o - A framework for fast, parallel, and distributed machine learning algorithms at scale -- Deeplearning, Random forests, GBM, KMeans, PCA, GLM.
  • hda - hda: Heteroscedastic Discriminant Analysis. [Deprecated]
  • igraph - binding to igraph library - General purpose graph library.
  • Introduction to Statistical Learning
  • ipred - ipred: Improved Predictors.
  • kernlab - kernlab: Kernel-based Machine Learning Lab.
  • klaR - klaR: Classification and visualization.
  • L0Learn - L0Learn: Fast algorithms for best subset selection.
  • lars - lars: Least Angle Regression, Lasso and Forward Stagewise. [Deprecated]
  • lasso2 - lasso2: L1 constrained estimation aka ‘lasso’.
  • LiblineaR - LiblineaR: Linear Predictive Models Based On The Liblinear C/C++ Library.
  • LogicReg - LogicReg: Logic Regression.
  • Machine Learning For Hackers
  • maptree - maptree: Mapping, pruning, and graphing tree models. [Deprecated]
  • mboost - mboost: Model-Based Boosting.
  • medley - medley: Blending regression models, using a greedy stepwise approach.
  • mlr - mlr: Machine Learning in R.
  • MXNet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.
  • ncvreg - ncvreg: Regularization paths for SCAD- and MCP-penalized regression models.
  • nnet - nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models. [Deprecated]
  • Optunity - A library dedicated to automated hyperparameter optimization with a simple, lightweight API to facilitate drop-in replacement of grid search. Optunity is written in Python but interfaces seamlessly to R.
  • pamr - pamr: Pam: prediction analysis for microarrays. [Deprecated]
  • party - party: A Laboratory for Recursive Partytioning.
  • partykit - partykit: A Toolkit for Recursive Partytioning.
  • penalized - penalized: L1 (lasso and fused lasso) and L2 (ridge) penalized estimation in GLMs and in the Cox model.
  • penalizedLDA - penalizedLDA: Penalized classification using Fisher's linear discriminant. [Deprecated]
  • penalizedSVM - penalizedSVM: Feature Selection SVM using penalty functions.
  • quantregForest - quantregForest: Quantile Regression Forests.
  • randomForest - randomForest: Breiman and Cutler's random forests for classification and regression.
  • randomForestSRC - randomForestSRC: Random Forests for Survival, Regression and Classification (RF-SRC).
  • rattle - rattle: Graphical user interface for data mining in R.
  • rda - rda: Shrunken Centroids Regularized Discriminant Analysis.
  • rdetools - rdetools: Relevant Dimension Estimation (RDE) in Feature Spaces. [Deprecated]
  • REEMtree - REEMtree: Regression Trees with Random Effects for Longitudinal (Panel) Data. [Deprecated]
  • relaxo - relaxo: Relaxed Lasso. [Deprecated]
  • rgenoud - rgenoud: R version of GENetic Optimization Using Derivatives
  • Rmalschains - Rmalschains: Continuous Optimization using Memetic Algorithms with Local Search Chains (MA-LS-Chains) in R.
  • rminer - rminer: Simpler use of data mining methods (e.g. NN and SVM) in classification and regression. [Deprecated]
  • ROCR - ROCR: Visualizing the performance of scoring classifiers. [Deprecated]
  • RoughSets - RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories. [Deprecated]
  • rpart - rpart: Recursive Partitioning and Regression Trees.
  • RPMM - RPMM: Recursively Partitioned Mixture Model.
  • RSNNS - RSNNS: Neural Networks in R using the Stuttgart Neural Network Simulator (SNNS).
  • RWeka - RWeka: R/Weka interface.
  • RXshrink - RXshrink: Maximum Likelihood Shrinkage via Generalized Ridge or Least Angle Regression.
  • sda - sda: Shrinkage Discriminant Analysis and CAT Score Variable Selection. [Deprecated]
  • spectralGraphTopology - spectralGraphTopology: Learning Graphs from Data via Spectral Constraints.
  • SuperLearner - Multi-algorithm ensemble learning packages.
  • svmpath - svmpath: svmpath: the SVM Path algorithm. [Deprecated]
  • TDSP-Utilities - Two data science utilities in R from Microsoft: 1) Interactive Data Exploration, Analysis, and Reporting (IDEAR) ; 2) Automated Modeling and Reporting (AMR).
  • tgp - tgp: Bayesian treed Gaussian process models. [Deprecated]
  • tree - tree: Classification and regression trees.
  • varSelRF - varSelRF: Variable selection using random forests.
  • XGBoost.R - R binding for eXtreme Gradient Boosting (Tree) Library.

Data Analysis / Data Visualization

  • ggplot2 - A data visualization package based on the grammar of graphics.
  • shiny is the basis for truly interactive displays and dashboards in R. However, some measure of interactivity can be achieved with htmlwidgets bringing javascript libraries to R. These include, plotly, dygraphs, highcharter, and several others.
  • tm and quanteda are the main packages for managing, analyzing, and visualizing textual data.
  • tmap for visualizing geospatial data with static maps and leaflet for interactive maps

SAS

General-Purpose Machine Learning

  • Enterprise Miner - Data mining and machine learning that creates deployable models using a GUI or code.
  • Factory Miner - Automatically creates deployable machine learning models across numerous market or customer segments using a GUI.
  • Visual Data Mining and Machine Learning - Interactive, automated, and programmatic modeling with the latest machine learning algorithms in and end-to-end analytics environment, from data prep to deployment. Free trial available.

Data Analysis / Data Visualization

  • SAS/STAT - For conducting advanced statistical analysis.
  • University Edition - FREE! Includes all SAS packages necessary for data analysis and visualization, and includes online SAS courses.

Natural Language Processing

Demos and Scripts

  • dm-flow - Library of SAS Enterprise Miner process flow diagrams to help you learn by example about specific data mining topics.
  • enlighten-apply - Example code and materials that illustrate applications of SAS machine learning techniques.
  • enlighten-deep - Example code and materials that illustrate using neural networks with several hidden layers in SAS.
  • enlighten-integration - Example code and materials that illustrate techniques for integrating SAS with other analytics technologies in Java, PMML, Python and R.
  • ML_Tables - Concise cheat sheets containing machine learning best practices.

Scala

Natural Language Processing

  • Breeze - Breeze is a numerical processing library for Scala.
  • Chalk - Chalk is a natural language processing library. [Deprecated]
  • FACTORIE - FACTORIE is a toolkit for deployable probabilistic modeling, implemented as a software library in Scala. It provides its users with a succinct language for creating relational factor graphs, estimating parameters and performing inference.
  • Montague - Montague is a semantic parsing library for Scala with an easy-to-use DSL.
  • ScalaNLP - ScalaNLP is a suite of machine learning and numerical computing libraries.
  • Spark NLP - Natural language processing library built on top of Apache Spark ML to provide simple, performant, and accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.

Data Analysis / Data Visualization

  • Algebird - Abstract Algebra for Scala.
  • BIDMat - CPU and GPU-accelerated matrix library intended to support large-scale exploratory data analysis.
  • Flink - Open source platform for distributed stream and batch data processing.
  • Hydrosphere Mist - a service for deployment Apache Spark MLLib machine learning models as realtime, batch or reactive web services.
  • MLlib in Apache Spark - Distributed machine learning library in Spark
  • PredictionIO - PredictionIO, a machine learning server for software developers and data engineers.
  • Scalding - A Scala API for Cascading.
  • Spark Notebook - Interactive and Reactive Data Science using Scala and Spark.
  • Summing Bird - Streaming MapReduce with Scalding and Storm.
  • xerial - Data management utilities for Scala. [Deprecated]

General-Purpose Machine Learning

  • adam - A genomics processing engine and specialized file format built using Apache Avro, Apache Spark and Parquet. Apache 2 licensed.
  • BIDMach - CPU and GPU-accelerated Machine Learning Library.
  • bioscala - Bioinformatics for the Scala programming language
  • brushfire - Distributed decision tree ensemble learning in Scala.
  • Conjecture - Scalable Machine Learning in Scalding.
  • DeepLearning.scala - Creating statically typed dynamic neural networks from object-oriented & functional programming constructs.
  • doddle-model - An in-memory machine learning library built on top of Breeze. It provides immutable objects and exposes its functionality through a scikit-learn-like API.
  • DynaML - Scala Library/REPL for Machine Learning Research.
  • Figaro - a Scala library for constructing probabilistic models.
  • FlinkML in Apache Flink - Distributed machine learning library in Flink.
  • ganitha - Scalding powered machine learning. [Deprecated]
  • H2O Sparkling Water - H2O and Spark interoperability.
  • Saul - Flexible Declarative Learning-Based Programming.
  • Smile - Statistical Machine Intelligence and Learning Engine.
  • SwiftLearner - Simply written algorithms to help study ML or write your own implementations.
  • TensorFlow Scala - Strongly-typed Scala API for TensorFlow.

Scheme

Neural Networks

Swift

General-Purpose Machine Learning

  • AIToolbox - A toolbox framework of AI modules written in Swift: Graphs/Trees, Linear Regression, Support Vector Machines, Neural Networks, PCA, KMeans, Genetic Algorithms, MDP, Mixture of Gaussians.
  • Awesome Core ML Models - A curated list of machine learning models in CoreML format.
  • Awesome CoreML - A curated list of pretrained CoreML models.
  • Bender - Fast Neural Networks framework built on top of Metal. Supports TensorFlow models.
  • BrainCore - The iOS and OS X neural network framework.
  • MLKit - A simple Machine Learning Framework written in Swift. Currently features Simple Linear Regression, Polynomial Regression, and Ridge Regression.
  • Perfect TensorFlow - Swift Language Bindings of TensorFlow. Using native TensorFlow models on both macOS / Linux.
  • PredictionBuilder - A library for machine learning that builds predictions using a linear regression.
  • Swift AI - Highly optimized artificial intelligence and machine learning library written in Swift.
  • Swift Brain - The first neural network / machine learning library written in Swift. This is a project for AI algorithms in Swift for iOS and OS X development. This project includes algorithms focused on Bayes theorem, neural networks, SVMs, Matrices, etc...
  • swix - A bare bones library that includes a general matrix language and wraps some OpenCV for iOS development. [Deprecated]

TensorFlow

General-Purpose Machine Learning

Tools

Neural Networks

  • layer - Neural network inference from the command line

Misc

  • DVC - Data Science Version Control is an open-source version control system for machine learning projects with pipelines support. It makes ML projects reproducible and shareable.
  • ML Workspace - All-in-one web-based IDE for machine learning and data science. The workspace is deployed as a docker container and is preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch) and dev tools (e.g., Jupyter, VS Code).
  • Notebooks - A starter kit for Jupyter notebooks and machine learning. Companion docker images consist of all combinations of python versions, machine learning frameworks (Keras, PyTorch and Tensorflow) and CPU/CUDA versions.

Credits

  • Some of the python libraries were cut-and-pasted from vinta
  • References for Go were mostly cut-and-pasted from gopherdata

About

A curated list of awesome Machine Learning frameworks, libraries and software.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%