Skip to content

Swift library for tensor operations, machine learning and artificial intelligence

License

Notifications You must be signed in to change notification settings

vincentherrmann/multilinear-math

Repository files navigation

multilinear-math

Swift library for multidimensional data, tensor operations and machine learning on OS X. For additional comments and documentation, please take a look at the Wiki.

Already implemented:

  • Swift wrappers of many important functions from the Accelerate framework and LAPACK (vector summation, addition, substraction, matrix and elementwise multiplication, division, matrix inverse, pseudo inverse, eigendecomposition, singular value decomposition...)
  • MultidimensionData protocol for elegant handling of multidimensional data of any kind
  • Clear, compact and powerful syntax for mathematical operations on tensors
  • Principal component analysis
  • Multilinear subspace learning algorithms for dimensionality reduction
  • Linear and logistic regression
  • Stochastic gradient descent
  • Feedforward neural networks
  • Sigmoid, ReLU, Softplus activation functions
  • Easy regularizations

Tensor reading, writing, slicing

Create data tensor:

var a = Tensor<Float>(modeSizes: [3, 3, 3], repeatedValue: 0)

Read and write single values:

let b: Float = a[1, 2, 0]
a[2, 0, 1] = 3.14

Read and write a tensor slice

let c: Tensor<Float> = a[1..<3, all, [0]]
a[1...1, [0, 2], all] = Tensor<Float>(modeSizes: [2, 3], values: [1, 2, 3, 4, 5, 6])

modes of size 1 will be trimmed

Einstein notation

Modes with same symbolic index will be summed over. Simple matrix multiplication:

var m = Tensor<Float>(modeSizes: [4, 6], repeatedValue: 1)
var n = Tensor<Float>(modeSizes: [6, 5], repeatedValue: 2)
let matrixProduct = m[.i, .j] * n[.j, .k]

Geodesic deviation:

var tangentVector = Tensor<Float>(modeSizes: [4], values: [0.3, 1.7, 0.2, 0.5])
tangentVector.isCartesian = false

var deviationVector = Tensor<Float>(modeSizes: [4], values: [0.1, 0.9, 0.4, 1.2])
deviationVector.isCartesian = false

var riemannianTensor = Tensor<Float>(diagonalWithModeSizes: [4, 4, 4, 4])
riemannianTensor.isCartesian = false
riemannianTensor.variances = [.contravariant, .covariant, .covariant, .covariant]

let relativeAcceleration = riemannianTensor[.μ, .ν, .ρ, .σ] * tangentVector[.ν] * tangentVector[.ρ] * deviationTensor[.σ]

Neural networks

Setting up and training a simple feedforward neural net:

var estimator =  NeuralNet(layerSizes: [28*28, 40, 10])
estimator.layers[0].activationFunction = ReLU(secondarySlope: 0.01) 
estimator.layers[1].activationFunction = ReLU(secondarySlope: 0.01)

var neuralNetCost = SquaredErrorCost(forEstimator: estimator)

stochasticGradientDescent(neuralNetCost, inputs: trainingData[.a, .b], targets: trainingLabels[.a, .c], updateRate: 0.1, minibatchSize: 50, validationCallback: ({ (epoch, estimator) -> (Bool) in
    if(epoch >= 30) {return true} 
    else {return false}
}))

documentation

Multilinear subspace learning

Extended PCA algorithms to work with tensors with arbitrary mode count

Installation

To use this framework in an OSX XCode project:

  • clone this repository
  • open your project in XCode
  • drag and drop MultilinearMath.xcodeproj into the project navigator of your project
  • select the .xcodeproj file of your project in the navigator
  • go to the "General" tab and add MultilinearMath.framework to the Linked Frameworks and Libraries
  • go to the "Build Settings" tab and set "Embedded Content Contains Swift Code" to YES
  • import MultilinearMath in your Swift files

If possible, whole module optimization should be used for very significant performance gains.

About

Swift library for tensor operations, machine learning and artificial intelligence

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages