-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add forgotten fiw dataset module (#71)
- Loading branch information
1 parent
cb7e2a4
commit def26ca
Showing
1 changed file
with
56 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
from pathlib import Path | ||
|
||
import cv2 | ||
import torch | ||
from torch.utils.data import Dataset | ||
|
||
from .utils import Sample | ||
|
||
|
||
class FIW(Dataset): | ||
def __init__(self, root_dir, sample_path, transform=None): | ||
self.root_dir = Path(root_dir) | ||
self.sample_path = sample_path | ||
self.transform = transform | ||
self.bias = 0 | ||
self.sample_list = self.load_sample() | ||
print(f"Loaded {len(self.sample_list)} samples from {sample_path}") | ||
|
||
def load_sample(self): | ||
sample_list = [] | ||
lines = Path(self.root_dir, self.sample_path).read_text().strip().split("\n") | ||
for line in lines: | ||
if len(line) < 1: | ||
continue | ||
tmp = line.split(" ") | ||
# sample = Sample(tmp[0], tmp[1], tmp[2], tmp[-2], tmp[-1]) | ||
# facornet | ||
# id, f1, f2, kin, is_kin, sim -> train | ||
# id, f1, f2, kin, is_kin -> val | ||
sample = Sample(tmp[0], tmp[1], tmp[2], tmp[3], tmp[4]) | ||
sample_list.append(sample) | ||
return sample_list | ||
|
||
def __len__(self): | ||
return len(self.sample_list) | ||
|
||
def read_image(self, path): | ||
# TODO: add to utils.py | ||
img = cv2.imread(f"{self.root_dir}/{path}") | ||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | ||
img = cv2.resize(img, (112, 112)) | ||
return img | ||
|
||
def set_bias(self, bias): | ||
self.bias = bias | ||
|
||
def __getitem__(self, item): | ||
# id, f1, f2, kin_relation, is_kin | ||
sample = self.sample_list[item + self.bias] | ||
img1, img2 = self.read_image(sample.f1), self.read_image(sample.f2) | ||
if self.transform is not None: | ||
img1, img2 = self.transform(img1), self.transform(img2) | ||
is_kin = torch.tensor(int(sample.is_kin)) | ||
kin_id = Sample.NAME2LABEL[sample.kin_relation] if is_kin else 0 | ||
labels = (kin_id, is_kin) | ||
return img1, img2, labels |