rERP | EEG visualisation | EEG Simulations | BIDS pipeline | Decode EEG data | Statistical testing |
---|---|---|---|---|---|
A toolbox for visualizations of EEG/ERP data and Unfold.jl models. Building on the Unfold and Makie, it grants users high performance, and highly customizable plots.
- ERP plots
- Butterfly plots
- Topography plots
- Topography time series
- ERP grid
- ERP images
- Channel images
- Parallel coordinates
- Designmatrices
- Circular topoplots
Click to expand
The recommended way to install julia is juliaup. It allows you to, e.g., easily update Julia at a later point, but also test out alpha/beta versions etc.
TL:DR; If you dont want to read the explicit instructions, just copy the following command
AppStore -> JuliaUp, or winget install julia -s msstore
in CMD
curl -fsSL https://install.julialang.org | sh
in any shell
using Pkg
Pkg.add("UnfoldMakie")
using UnfoldMakie
using CairoMakie # backend
using Unfold,UnfoldSim # Fit / Simulation
data, evts = UnfoldSim.predef_eeg(; noiselevel = 12, return_epoched = true)
data = reshape(data,1,size(data)...) # fake a single channel
times = range(0, step = 1 / 100, length = size(data, 2))
m = fit(UnfoldModel,@formula(0~1+condition),evts,data,times)
plot_erp(coeftable(m))
Contributions are very welcome. These could be typos, bugreports, feature-requests, speed-optimization, new solvers, better code, better documentation.
You are very welcome to raise issues and start pull requests!
- We recommend to write a Literate.jl document and place it in
docs/literate/FOLDER/FILENAME.jl
withFOLDER
beingHowTo
,Explanation
,Tutorial
orReference
(recommended reading on the 4 categories). - Literate.jl converts the
.jl
file to a.md
automatically and places it indocs/src/generated/FOLDER/FILENAME.md
. - Edit make.jl with a reference to
docs/src/generated/FOLDER/FILENAME.md
.
If you make use of theses visualizations, please cite:
- Daniel Baumgartner
- Benedikt Ehinger
- Sören Döring
- Niklas Gärtner
- Furkan Lokman
- Vladimir Mikheev
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project ID 251654672 – TRR 161 (project D05)
Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2075 – 390740016