Customized collection of ODE solvers
pip install cleanode
EulerODESolver
MidpointODESolver
RungeKutta4ODESolver
Fehlberg45Solver
Ralston2ODESolver
RungeKutta3ODESolver
Heun3ODESolver
Ralston3ODESolver
SSPRK3ODESolver
Ralston4ODESolver
Rule384ODESolver
HeunEuler21ODESolver
Fehlberg21ODESolver
BogackiShampine32ODESolver
CashKarp54ODESolver
DormandPrince54ODESolver
EverhartIIRadau7ODESolver
EverhartIIRadau15ODESolver
EverhartIIRadau21ODESolver
EverhartIILobatto7ODESolver
EverhartIILobatto15ODESolver
EverhartIILobatto21ODESolver
to be continued...
import numpy as np
import matplotlib.pyplot as plt
from typing import Union, List
import scipy.constants as const
from cleanode.ode_solvers import *
# Example of the system ODE solving: simple orbit
if __name__ == '__main__':
# noinspection PyUnusedLocal
def f(u: List[float], t: Union[np.ndarray, np.float64]) -> List:
"""
Calculation of the right parts of the ODE system
:param u: values of variables
:type u: List[float]
:param t: time
:type t: Union[np.ndarray, np.float64]
:return: calculated values of the right parts
:rtype: np.ndarray
"""
# Mathematically, the ODE system looks like this:
# dx/dt = Vx
# dVx/dt = -x / sqrt(x^2 + y^2 + z^2)^3
# dy/dt = Vy
# dVy/dt = -y / sqrt(x^2 + y^2 + z^2)^3
# dz/dt = Vz
# dVz/dt = -z / sqrt(x^2 + y^2 + z^2)^3
g = const.g
x = u[0]
vx = u[1]
y = u[2]
vy = u[3]
z = u[4]
vz = u[5]
right_sides = [
vx,
-x / math.sqrt(x**2 + y**2 + z**2)**3,
vy,
-y / math.sqrt(x**2 + y**2 + z**2)**3,
vz,
-z / math.sqrt(x**2 + y**2 + z**2)**3
]
return right_sides
# noinspection PyUnusedLocal
def f2(u: np.longdouble, du_dt: np.longdouble, t: Union[np.ndarray, np.longdouble]) -> np.array:
"""
Calculating the right side of the 2nd order ODE
:param u: variable
:type u: np.longdouble
:param du_dt: time derivative of variable
:type du_dt: np.longdouble
:param t: time
:type t: Union[np.ndarray, np.float64]
:return: calculated value of the right part
:rtype: np.array
"""
# Mathematically, the ODE system looks like this:
# d(dx)/dt^2 = -x / sqrt(x^2 + y^2 + z^2)^3
# d(dy)/dt^2 = -y / sqrt(x^2 + y^2 + z^2)^3
# d(dz)/dt^2 = -z / sqrt(x^2 + y^2 + z^2)^3
x = u[0]
y = u[1]
z = u[2]
right_sides = np.array([
-x / math.sqrt(x**2 + y**2 + z**2)**3,
-y / math.sqrt(x**2 + y**2 + z**2)**3,
-z / math.sqrt(x**2 + y**2 + z**2)**3
], dtype='longdouble')
return right_sides
def exact_f(t):
x = np.sin(t)
y = np.cos(t)
return x, y
# calculation parameters:
t0 = np.longdouble(0)
tmax = np.longdouble(10 * math.pi)
dt0 = np.longdouble(0.01)
tolerance = 1e-4
is_adaptive_step = True
# initial conditions:
x0 = np.longdouble(0)
y0 = np.longdouble(1)
z0 = np.longdouble(0)
vx0 = np.longdouble(1)
vy0 = np.longdouble(0)
vz0 = np.longdouble(0)
u0 = np.array([x0, vx0, y0, vy0, z0, vz0], dtype='longdouble')
solver = Fehlberg45Solver(f, u0, t0, tmax, dt0, is_adaptive_step=is_adaptive_step, tolerance=tolerance)
solution, time_points = solver.solve(print_benchmark=True, benchmark_name=solver.name)
x_solution = solution[:, 0]
y_solution = solution[:, 2]
z_solution = solution[:, 4]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1)
ax.title.set_text('Solution')
ax.plot(time_points, x_solution, label=solver.name)
u0 = np.array([x0, y0, z0], dtype='longdouble')
du_dt0 = np.array([vx0, vy0, vz0], dtype='longdouble')
solver1 = EverhartIIRadau7ODESolver(f2, u0, du_dt0, t0, tmax, dt0, is_adaptive_step=is_adaptive_step,
tolerance=tolerance)
solution1, d_solution1, time_points1 = solver1.solve(print_benchmark=True, benchmark_name=solver1.name)
x_solution1 = solution1[:, 0]
y_solution1 = solution1[:, 1]
z_solution1 = solution1[:, 2]
ax.plot(time_points1, x_solution1, label=solver1.name)
points_number = int((tmax - t0) / dt0)
if is_adaptive_step:
time_exact = np.linspace(t0, t0 + dt0 * points_number, (points_number + 1))
else:
time_exact = np.linspace(t0, t0 + dt0 * points_number, points_number + 2)
x_exact, y_exact = exact_f(time_exact)
plt.plot(time_exact, x_exact, label='Exact analytical solution')
ax.legend(loc='upper left')
error = abs(x_exact - x_solution)
error1 = abs(x_exact - x_solution1)
ax1 = fig.add_subplot(2, 1, 2)
ax1.title.set_text('Error')
ax1.plot(error, label=solver.name)
ax1.plot(error1, label=solver1.name)
ax1.legend(loc='upper left')
figManager = plt.get_current_fig_manager()
figManager.window.showMaximized()
plt.show()