Skip to content

Commit

Permalink
Merge branch 'main' into bad_chan_cnt
Browse files Browse the repository at this point in the history
  • Loading branch information
withmywoessner authored Nov 10, 2023
2 parents e8a4e0f + 7b3e3c9 commit efbc135
Show file tree
Hide file tree
Showing 58 changed files with 286 additions and 134 deletions.
2 changes: 2 additions & 0 deletions doc/changes/devel.rst
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@ Bugs
- Fix bug where ``encoding`` argument was ignored when reading annotations from an EDF file (:gh:`11958` by :newcontrib:`Andrew Gilbert`)
- Mark tests ``test_adjacency_matches_ft`` and ``test_fetch_uncompressed_file`` as network tests (:gh:`12041` by :newcontrib:`Maksym Balatsko`)
- Fix bug with :func:`mne.channels.read_ch_adjacency` (:gh:`11608` by :newcontrib:`Ivan Zubarev`)
- Fix bug where ``epochs.get_data(..., scalings=...)`` would errantly modify the preloaded data (:gh:`12121` by :newcontrib:`Pablo Mainar` and `Eric Larson`_)
- Fix bugs with saving splits for :class:`~mne.Epochs` (:gh:`11876` by `Dmitrii Altukhov`_)
- Fix bug with multi-plot 3D rendering where only one plot was updated (:gh:`11896` by `Eric Larson`_)
- Fix bug where ``verbose`` level was not respected inside parallel jobs (:gh:`12154` by `Eric Larson`_)
Expand Down Expand Up @@ -92,6 +93,7 @@ Bugs

API changes
~~~~~~~~~~~
- The default for :meth:`mne.Epochs.get_data` of ``copy=False`` will change to ``copy=True`` in 1.7. Set it explicitly to avoid a warning (:gh:`12121` by :newcontrib:`Pablo Mainar` and `Eric Larson`_)
- ``mne.preprocessing.apply_maxfilter`` and ``mne maxfilter`` have been deprecated and will be removed in 1.7. Use :func:`mne.preprocessing.maxwell_filter` (see :ref:`this tutorial <tut-artifact-sss>`) in Python or the command-line utility from MEGIN ``maxfilter`` and :func:`mne.bem.fit_sphere_to_headshape` instead (:gh:`11938` by `Eric Larson`_)
- :func:`mne.io.kit.read_mrk` reading pickled files is deprecated using something like ``np.savetxt(fid, pts, delimiter="\t", newline="\n")`` to save your points instead (:gh:`11937` by `Eric Larson`_)
- Replace legacy ``inst.pick_channels`` and ``inst.pick_types`` with ``inst.pick`` (where ``inst`` is an instance of :class:`~mne.io.Raw`, :class:`~mne.Epochs`, or :class:`~mne.Evoked`) wherever possible (:gh:`11907` by `Clemens Brunner`_)
Expand Down
2 changes: 2 additions & 0 deletions doc/changes/names.inc
Original file line number Diff line number Diff line change
Expand Up @@ -406,6 +406,8 @@

.. _Pablo-Arias: https://github.com/Pablo-Arias

.. _Pablo Mainar: https://github.com/pablomainar

.. _Padma Sundaram: https://www.nmr.mgh.harvard.edu/user/8071

.. _Paul Pasler: https://github.com/ppasler
Expand Down
1 change: 1 addition & 0 deletions examples/datasets/kernel_phantom.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@

# %%
# The data covariance has an interesting structure because of densely packed sensors:

cov = mne.compute_covariance(epochs, tmax=-0.01)
mne.viz.plot_cov(cov, raw.info)

Expand Down
1 change: 0 additions & 1 deletion examples/datasets/limo_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@
# License: BSD-3-Clause

# %%

import matplotlib.pyplot as plt
import numpy as np

Expand Down
4 changes: 2 additions & 2 deletions examples/decoding/decoding_csp_eeg.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,8 +78,8 @@

# Define a monte-carlo cross-validation generator (reduce variance):
scores = []
epochs_data = epochs.get_data()
epochs_data_train = epochs_train.get_data()
epochs_data = epochs.get_data(copy=False)
epochs_data_train = epochs_train.get_data(copy=False)
cv = ShuffleSplit(10, test_size=0.2, random_state=42)
cv_split = cv.split(epochs_data_train)

Expand Down
4 changes: 2 additions & 2 deletions examples/decoding/decoding_csp_timefreq.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@
epochs.drop_bad()
y = le.fit_transform(epochs.events[:, 2])

X = epochs.get_data()
X = epochs.get_data(copy=False)

# Save mean scores over folds for each frequency and time window
freq_scores[freq] = np.mean(
Expand Down Expand Up @@ -165,7 +165,7 @@
w_tmax = w_time + w_size / 2.0

# Crop data into time-window of interest
X = epochs.copy().crop(w_tmin, w_tmax).get_data()
X = epochs.get_data(tmin=w_tmin, tmax=w_tmax, copy=False)

# Save mean scores over folds for each frequency and time window
tf_scores[freq, t] = np.mean(
Expand Down
4 changes: 2 additions & 2 deletions examples/decoding/decoding_time_generalization_conditions.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,12 +77,12 @@

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(), y=epochs["Left"].events[:, 2] > 2)
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)

# %%
# Score on the epochs where the stimulus was presented to the right.
scores = time_gen.score(
X=epochs["Right"].get_data(), y=epochs["Right"].events[:, 2] > 2
X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)

# %%
Expand Down
2 changes: 1 addition & 1 deletion examples/decoding/decoding_unsupervised_spatial_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@
verbose=False,
)

X = epochs.get_data()
X = epochs.get_data(copy=False)

##############################################################################
# Transform data with PCA computed on the average ie evoked response
Expand Down
2 changes: 1 addition & 1 deletion examples/decoding/ems_filtering.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@
epochs.pick("grad")

# Setup the data to use it a scikit-learn way:
X = epochs.get_data() # The MEG data
X = epochs.get_data(copy=False) # The MEG data
y = epochs.events[:, 2] # The conditions indices
n_epochs, n_channels, n_times = X.shape

Expand Down
2 changes: 1 addition & 1 deletion examples/decoding/linear_model_patterns.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@

# get MEG data
meg_epochs = epochs.copy().pick(picks="meg", exclude="bads")
meg_data = meg_epochs.get_data().reshape(len(labels), -1)
meg_data = meg_epochs.get_data(copy=False).reshape(len(labels), -1)

# %%
# Decoding in sensor space using a LogisticRegression classifier
Expand Down
2 changes: 1 addition & 1 deletion examples/decoding/ssd_spatial_filters.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,7 @@
h_trans_bandwidth=1,
),
)
ssd_epochs.fit(X=epochs.get_data())
ssd_epochs.fit(X=epochs.get_data(copy=False))

# Plot topographies.
pattern_epochs = mne.EvokedArray(data=ssd_epochs.patterns_[:4].T, info=ssd_epochs.info)
Expand Down
3 changes: 1 addition & 2 deletions examples/preprocessing/otp.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@
# License: BSD-3-Clause

# %%

import numpy as np

import mne
Expand Down Expand Up @@ -70,7 +69,7 @@ def compute_bias(raw):
sphere = mne.make_sphere_model(r0=(0.0, 0.0, 0.0), head_radius=None, verbose=False)
cov = mne.compute_covariance(epochs, tmax=0, method="oas", rank=None, verbose=False)
idx = epochs.time_as_index(0.036)[0]
data = epochs.get_data()[:, :, idx].T
data = epochs.get_data(copy=False)[:, :, idx].T
evoked = mne.EvokedArray(data, epochs.info, tmin=0.0)
dip = fit_dipole(evoked, cov, sphere, n_jobs=None, verbose=False)[0]
actual_pos = mne.dipole.get_phantom_dipoles()[0][dipole_number - 1]
Expand Down
15 changes: 8 additions & 7 deletions examples/stats/sensor_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,6 @@
of the words for which we have EEG activity.
For the general methodology, see e.g. :footcite:`HaukEtAl2006`.
References
----------
.. footbibliography::
"""
# Authors: Tal Linzen <[email protected]>
# Denis A. Engemann <[email protected]>
Expand All @@ -43,7 +39,7 @@
epochs = mne.read_epochs(path)
print(epochs.metadata.head())

##############################################################################
# %%
# Psycholinguistically relevant word characteristics are continuous. I.e.,
# concreteness or imaginability is a graded property. In the metadata,
# we have concreteness ratings on a 5-point scale. We can show the dependence
Expand All @@ -59,7 +55,7 @@
evokeds, colors=colors, split_legend=True, cmap=(name + " Percentile", "viridis")
)

##############################################################################
# %%
# We observe that there appears to be a monotonic dependence of EEG on
# concreteness. We can also conduct a continuous analysis: single-trial level
# regression with concreteness as a continuous (although here, binned)
Expand All @@ -72,7 +68,7 @@
title=cond, ts_args=dict(time_unit="s"), topomap_args=dict(time_unit="s")
)

##############################################################################
# %%
# Because the :func:`~mne.stats.linear_regression` function also estimates
# p values, we can --
# after applying FDR correction for multiple comparisons -- also visualise the
Expand All @@ -85,3 +81,8 @@
reject_H0, fdr_pvals = fdr_correction(res["Concreteness"].p_val.data)
evoked = res["Concreteness"].beta
evoked.plot_image(mask=reject_H0, time_unit="s")

# %%
# References
# ----------
# .. footbibliography::
14 changes: 5 additions & 9 deletions mne/_fiff/tests/test_reference.py
Original file line number Diff line number Diff line change
Expand Up @@ -620,12 +620,10 @@ def test_add_reference():
assert_equal(epochs_ref._data.shape[1], epochs._data.shape[1] + 1)
_check_channel_names(epochs_ref, "Ref")
ref_idx = epochs_ref.ch_names.index("Ref")
ref_data = epochs_ref.get_data()[:, ref_idx, :]
ref_data = epochs_ref.get_data(picks=[ref_idx])[:, 0]
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
assert_array_equal(
epochs.get_data()[:, picks_eeg, :], epochs_ref.get_data()[:, picks_eeg, :]
)
assert_array_equal(epochs.get_data(picks_eeg), epochs_ref.get_data(picks_eeg))

# add two reference channels to epochs
raw = read_raw_fif(fif_fname, preload=True)
Expand All @@ -650,12 +648,10 @@ def test_add_reference():
ref_idy = epochs_ref.ch_names.index("M2")
assert_equal(epochs_ref.info["chs"][ref_idx]["ch_name"], "M1")
assert_equal(epochs_ref.info["chs"][ref_idy]["ch_name"], "M2")
ref_data = epochs_ref.get_data()[:, [ref_idx, ref_idy], :]
ref_data = epochs_ref.get_data([ref_idx, ref_idy])
assert_array_equal(ref_data, 0)
picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
assert_array_equal(
epochs.get_data()[:, picks_eeg, :], epochs_ref.get_data()[:, picks_eeg, :]
)
assert_array_equal(epochs.get_data(picks_eeg), epochs_ref.get_data(picks_eeg))

# add reference channel to evoked
raw = read_raw_fif(fif_fname, preload=True)
Expand Down Expand Up @@ -725,7 +721,7 @@ def test_add_reference():
data = data.get_data()
epochs = make_fixed_length_epochs(raw).load_data()
data_2 = epochs.copy().add_reference_channels(["REF"]).pick(picks="eeg")
data_2 = data_2.get_data()[0]
data_2 = data_2.get_data(copy=False)[0]
assert_allclose(data, data_2)
evoked = epochs.average()
data_3 = evoked.copy().add_reference_channels(["REF"]).pick(picks="eeg")
Expand Down
2 changes: 1 addition & 1 deletion mne/beamformer/_dics.py
Original file line number Diff line number Diff line change
Expand Up @@ -493,7 +493,7 @@ def apply_dics_epochs(epochs, filters, return_generator=False, verbose=None):
tmin = epochs.times[0]

sel = _check_channels_spatial_filter(epochs.ch_names, filters)
data = epochs.get_data()[:, sel, :]
data = epochs.get_data(sel)

stcs = _apply_dics(data=data, filters=filters, info=info, tmin=tmin)

Expand Down
2 changes: 1 addition & 1 deletion mne/beamformer/_lcmv.py
Original file line number Diff line number Diff line change
Expand Up @@ -402,7 +402,7 @@ def apply_lcmv_epochs(epochs, filters, *, return_generator=False, verbose=None):
tmin = epochs.times[0]

sel = _check_channels_spatial_filter(epochs.ch_names, filters)
data = epochs.get_data()[:, sel, :]
data = epochs.get_data(sel)
stcs = _apply_lcmv(data=data, filters=filters, info=info, tmin=tmin)

if not return_generator:
Expand Down
5 changes: 4 additions & 1 deletion mne/channels/channels.py
Original file line number Diff line number Diff line change
Expand Up @@ -1898,7 +1898,10 @@ def combine_channels(
ch_idx = list(range(inst.info["nchan"]))
ch_names = inst.info["ch_names"]
ch_types = inst.get_channel_types()
inst_data = inst.data if isinstance(inst, Evoked) else inst.get_data()
kwargs = dict()
if isinstance(inst, BaseEpochs):
kwargs["copy"] = False
inst_data = inst.get_data(**kwargs)
groups = OrderedDict(deepcopy(groups))

# Convert string values of ``method`` into callables
Expand Down
2 changes: 1 addition & 1 deletion mne/channels/tests/test_channels.py
Original file line number Diff line number Diff line change
Expand Up @@ -615,7 +615,7 @@ def test_equalize_channels():
assert raw2.ch_names == ["CH1", "CH2"]
assert_array_equal(raw2.get_data(), [[1.0], [2.0]])
assert epochs2.ch_names == ["CH1", "CH2"]
assert_array_equal(epochs2.get_data(), [[[3.0], [2.0]]])
assert_array_equal(epochs2.get_data(copy=False), [[[3.0], [2.0]]])
assert cov2.ch_names == ["CH1", "CH2"]
assert cov2["bads"] == cov["bads"]
assert ave2.ch_names == ave.ch_names
Expand Down
4 changes: 2 additions & 2 deletions mne/channels/tests/test_interpolation.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,10 +232,10 @@ def test_interpolation_meg():
assert len(raw_meg.info["bads"]) == len(raw_meg.info["bads"])

# MEG -- epochs
data1 = epochs_meg.get_data()[:, pick, :].ravel()
data1 = epochs_meg.get_data(pick).ravel()
epochs_meg.info.normalize_proj()
epochs_meg.interpolate_bads(mode="fast")
data2 = epochs_meg.get_data()[:, pick, :].ravel()
data2 = epochs_meg.get_data(pick).ravel()
assert np.corrcoef(data1, data2)[0, 1] > thresh
assert len(epochs_meg.info["bads"]) == 0

Expand Down
2 changes: 1 addition & 1 deletion mne/decoding/tests/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -317,7 +317,7 @@ def test_get_coef_multiclass_full(n_classes, n_channels, n_times):
)
scorer = "roc_auc_ovr_weighted"
time_gen = GeneralizingEstimator(clf, scorer, verbose=True)
X = epochs.get_data()
X = epochs.get_data(copy=False)
y = epochs.events[:, 2]
n_splits = 3
cv = StratifiedKFold(n_splits=n_splits)
Expand Down
6 changes: 3 additions & 3 deletions mne/decoding/tests/test_csp.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@ def test_csp():
preload=True,
proj=False,
)
epochs_data = epochs.get_data()
epochs_data = epochs.get_data(copy=False)
n_channels = epochs_data.shape[1]
y = epochs.events[:, -1]

Expand Down Expand Up @@ -182,7 +182,7 @@ def test_csp():
proj=False,
preload=True,
)
epochs_data = epochs.get_data()
epochs_data = epochs.get_data(copy=False)
n_channels = epochs_data.shape[1]

n_channels = epochs_data.shape[1]
Expand Down Expand Up @@ -256,7 +256,7 @@ def test_regularized_csp():
epochs = Epochs(
raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True
)
epochs_data = epochs.get_data()
epochs_data = epochs.get_data(copy=False)
n_channels = epochs_data.shape[1]

n_components = 3
Expand Down
2 changes: 1 addition & 1 deletion mne/decoding/tests/test_ems.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ def test_ems():
raw.close()

# EMS transformer, check that identical to compute_ems
X = epochs.get_data()
X = epochs.get_data(copy=False)
y = epochs.events[:, 2]
X = X / np.std(X) # X scaled outside cv in compute_ems
Xt, coefs = list(), list()
Expand Down
10 changes: 5 additions & 5 deletions mne/decoding/tests/test_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def test_scaler(info, method):
epochs = Epochs(
raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True
)
epochs_data = epochs.get_data()
epochs_data = epochs.get_data(copy=False)
y = epochs.events[:, -1]

epochs_data_t = epochs_data.transpose([1, 0, 2])
Expand Down Expand Up @@ -115,7 +115,7 @@ def test_scaler(info, method):
picks=np.arange(len(raw.ch_names)),
) # non-data chs
scaler = Scaler(epochs_bad.info, None)
pytest.raises(ValueError, scaler.fit, epochs_bad.get_data(), y)
pytest.raises(ValueError, scaler.fit, epochs_bad.get_data(copy=False), y)


def test_filterestimator():
Expand All @@ -129,7 +129,7 @@ def test_filterestimator():
epochs = Epochs(
raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True
)
epochs_data = epochs.get_data()
epochs_data = epochs.get_data(copy=False)

# Add tests for different combinations of l_freq and h_freq
filt = FilterEstimator(epochs.info, l_freq=40, h_freq=80)
Expand Down Expand Up @@ -180,7 +180,7 @@ def test_psdestimator():
epochs = Epochs(
raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True
)
epochs_data = epochs.get_data()
epochs_data = epochs.get_data(copy=False)
psd = PSDEstimator(2 * np.pi, 0, np.inf)
y = epochs.events[:, -1]
X = psd.fit_transform(epochs_data, y)
Expand Down Expand Up @@ -244,7 +244,7 @@ def test_unsupervised_spatial_filter():
pytest.raises(ValueError, UnsupervisedSpatialFilter, KernelRidge(2))

# Test fit
X = epochs.get_data()
X = epochs.get_data(copy=False)
n_components = 4
usf = UnsupervisedSpatialFilter(PCA(n_components))
usf.fit(X)
Expand Down
Loading

0 comments on commit efbc135

Please sign in to comment.