@article{tian2019fcos,
title={FCOS: Fully Convolutional One-Stage Object Detection},
author={Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
journal={arXiv preprint arXiv:1904.01355},
year={2019}
}
Backbone | Style | GN | MS train | Tricks | DCN | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
---|---|---|---|---|---|---|---|---|---|---|
R-50 | caffe | N | N | N | N | 1x | 5.2 | 22.9 | 36.2 | model | log |
R-50 | caffe | Y | N | N | N | 1x | 6.5 | 22.7 | 36.6 | model | log |
R-50 | caffe | Y | N | Y | N | 1x | - | - | 38.6 | model | log |
R-50 | caffe | Y | N | Y | Y | 1x | - | - | 42.5 | model | log |
R-50 | caffe | Y | N | N | N | 2x | - | - | 36.9 | model | log |
R-101 | caffe | Y | N | N | N | 1x | 10.2 | 17.3 | 39.2 | model | log |
R-101 | caffe | Y | N | N | N | 2x | - | - | 39.1 | model | log |
Backbone | Style | GN | MS train | Lr schd | Mem (GB) | Inf time (fps) | box AP | Download |
---|---|---|---|---|---|---|---|---|
R-50 | caffe | Y | Y | 2x | 6.5 | 22.9 | 38.7 | model | log |
R-101 | caffe | Y | Y | 2x | 10.2 | 17.3 | 40.9 | model | log |
X-101 | pytorch | Y | Y | 2x | 10.0 | 9.3 | 42.5 | model | log |
Notes:
- To be consistent with the author's implementation, we use 4 GPUs with 4 images/GPU for R-50 and R-101 models, and 8 GPUs with 2 image/GPU for X-101 models.
- The X-101 backbone is X-101-64x4d.
- Tricks means setting
norm_on_bbox
,centerness_on_reg
,center_sampling
asTrue
. - DCN means using
DCNv2
in both backbone and head.