- This paper introduces a CNN-ViT hybrid network called SBCFormer, which achieves high accuracy and fast computation on such low-end CPUs.
- We compare our SBCFormers against a wide range of relevant and up-todate alternatives.
- SBCFormer uses the proposed hourglass attention computation to aggregate global information from the entire image while minimizing computational costs.
- SBCFormer achieves the highest trade-off between accuracy and speed on a Raspberry Pi 4 Model B with an ARM-Cortex A72 CPU.
- SBCFormer as a new backbone is available for various tasks: ImageNet-1K Classification, object detection, and monocular depth estimation.[Successful Implementation].
Models are trained on ImageNet-1K and measured the latency performance on ARM and Intel CPUs.
Download and extract ImageNet train and val images from http://image-net.org/. The training and validation data are expected to be in the train
folder and val
folder respectively:
/path/to/imagenet/
train/
class1/
img1.jpeg
class2/
img2.jpeg
val/
class1/
img3.jpeg
class/2
img4.jpeg
Training the SBCFormer_B on ImageNet with an 4-gpu server for 300 epochs:
OMP_NUM_THREADS=1 torchrun --nnodes 1 --nproc_per_node=4 --master_port 29502 main.py --lr 2.5e-4 --model "SBCFormer_B" --resume "" --data-set "IMNET" --data-path "/path/to/imagenet" --input-size 224 --batch-size 1024 --epochs 300
Evaluating the trained SBCFormer_B on ImageNet is available:
python main.py --model "SBCFormer_B" --eval --resume "/path/to/checkpoint" --data-set "IMNET" --data-path "/path/to/imagenet" --input-size 224 --batch-size 1024 --epochs 300
The trained SBCFormer_B model can be downloaded from [SBCFormer_B, 80.0%]
This repository is built using the timm library and the DeiT repository.
If our code or models help your work, please cite SBCFormer (WACV2024):
@inproceedings{lu2024sbcformer,
title={SBCFormer: Lightweight Network Capable of Full-size ImageNet Classification at 1 FPS on Single Board Computers},
author={Lu, Xiangyong and Suganuma, Masanori and Okatani, Takayuki},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={1123--1133},
year={2024}
}